Mostrar el registro sencillo del ítem

dc.contributor.author
Kang, Naixin  
dc.contributor.author
Wang, Qi  
dc.contributor.author
Djeda, Rodrigue  
dc.contributor.author
Wang, Wenjuan  
dc.contributor.author
Fu, Fangyu  
dc.contributor.author
Moro, Marta Martinez  
dc.contributor.author
Ramirez, Maria de Los Angeles  
dc.contributor.author
Moya, Sergio  
dc.contributor.author
Coy, Emerson  
dc.contributor.author
Salmon, Lionel  
dc.contributor.author
Pozzo, Jean-Luc  
dc.contributor.author
Astruc, Didier  
dc.date.available
2022-10-14T15:13:49Z  
dc.date.issued
2020-12  
dc.identifier.citation
Kang, Naixin; Wang, Qi; Djeda, Rodrigue; Wang, Wenjuan; Fu, Fangyu; et al.; Visible-light acceleration of H2 evolution from aqueous solutions of inorganic hydrides catalyzed by gold-transition-metal nanoalloys; American Chemical Society; ACS Applied Materials & Interfaces; 12; 48; 12-2020; 53816-53826  
dc.identifier.issn
1944-8244  
dc.identifier.uri
http://hdl.handle.net/11336/173257  
dc.description.abstract
Production of hydrogen (H2) upon hydrolysis of inorganic hydrides potentially is a key step in green energy production. We find that visible-light irradiation of aqueous solutions of ammonia-borane (AB) or NaBH4 containing "click"-dendrimer-stabilized alloyed nanocatalysts composed of nanogold and another late transition-metal nanoparticle (LTMNP) highly enhances catalytic activity for H2 generation while also inducing alloy to Au core@M shell nanocatalyst restructuration. In terms of visible-light-induced acceleration of H2 production from both AB and NaBH4, the Au1Ru1 alloy catalysts show the most significant light-boosting effect. Au-Rh and Au-PtNPs are also remarkable with total H2 release time from AB and NaBH4 down to 1.3 min at 25 °C (AuRh), 3 times less than in the dark, and Co is the best earth-abundant metal alloyed with nanogold. This boosting effect is explained by the transfer of plasmon-induced hot electron from the Au atoms to the LTMNP atoms facilitating water O-H oxidative addition on the LTMNP surface, as shown by the large primary kinetic isotope effect kH/kD upon using D2O obtained for both AB and NaBH4. The second simultaneous and progressive effect of visible-light irradiation during these reactions, alloy to Au core@M shell restructuration, enhances the catalytic activity in the recycling, because, in the resulting Au core@M shell, the surface metal (such as Ru) is much more active than the original Au-containing alloy surface in dark reactions. There is no light effect on the rate of hydrogen production for the recycled nanocatalyst because of the absence of Au on the NP surface, but it is still very efficient in hydrogen release during four cycles because of the initial light-induced restructuration, although it is slightly less efficient than the original nanoalloy in the presence of light. The dendritic triazole coordination on each LTMNP surface appears to play a key role in these remarkable light-induced processes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIMETALLIC NANOPARTICLES  
dc.subject
BORON HYDRIDE  
dc.subject
HYDROGEN PRODUCTION  
dc.subject
NANOGOLD  
dc.subject
PLASMON  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Visible-light acceleration of H2 evolution from aqueous solutions of inorganic hydrides catalyzed by gold-transition-metal nanoalloys  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-10-11T19:39:22Z  
dc.journal.volume
12  
dc.journal.number
48  
dc.journal.pagination
53816-53826  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington D.C  
dc.description.fil
Fil: Kang, Naixin. Universite de Bordeaux; Francia  
dc.description.fil
Fil: Wang, Qi. Universite de Bordeaux; Francia  
dc.description.fil
Fil: Djeda, Rodrigue. Universite de Bordeaux; Francia  
dc.description.fil
Fil: Wang, Wenjuan. Universite de Bordeaux; Francia  
dc.description.fil
Fil: Fu, Fangyu. Universite de Bordeaux; Francia  
dc.description.fil
Fil: Moro, Marta Martinez. Centro de Investigación Cooperativa en Biomateriales; España  
dc.description.fil
Fil: Ramirez, Maria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Centro de Investigación Cooperativa en Biomateriales; España  
dc.description.fil
Fil: Moya, Sergio. Centro de Investigación Cooperativa en Biomateriales ; España. Adam Mickiewicz University; Polonia  
dc.description.fil
Fil: Coy, Emerson. Adam Mickiewicz University; Polonia  
dc.description.fil
Fil: Salmon, Lionel. University of Toulouse III; Francia  
dc.description.fil
Fil: Pozzo, Jean-Luc. Universite de Bordeaux; Francia  
dc.description.fil
Fil: Astruc, Didier. Universite de Bordeaux; Francia  
dc.journal.title
ACS Applied Materials & Interfaces  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsami.0c16247  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsami.0c16247