Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The Parkinson disease pain classification system: Results from an international mechanism-based classification approach

Mylius, Veit; Perez Lloret, SantiagoIcon ; Cury, Rubens G.; Teixeira, Manoel J.; Barbosa, Victor R.; Barbosa, Egberto R.; Moreira, Larissa I.; Listik, Clarice; Fernandes, Ana M.; de Lacerda Veiga, Diogo; Barbour, Julio; Hollenstein, Nathalie; Oechsner, Matthias; Walch, Julia; Brugger, Florian; Hägele Link, Stefan; Beer, Serafin; Rizos, Alexandra; Chaudhuri, Kallol Ray; Bouhassira, Didier; Lefaucheur, Jean Pascal; Timmermann, Lars; Gonzenbach, Roman; Kägi, Georg; Möller, Jens Carsten; Ciampi de Andrade, Daniel
Fecha de publicación: 04/2021
Editorial: Lippincott Williams
Revista: Pain
ISSN: 0304-3959
e-ISSN: 1872-6623
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Neurología Clínica

Resumen

Pain is a common nonmotor symptom in patients with Parkinson disease (PD) but the correct diagnosis of the respective cause remains difficult because suitable tools are lacking, so far. We developed a framework to differentiate PD- from non-PD-related pain and classify PD-related pain into 3 groups based on validated mechanistic pain descriptors (nociceptive, neuropathic, or nociplastic), which encompass all the previously described PD pain types. Severity of PD-related pain syndromes was scored by ratings of intensity, frequency, and interference with daily living activities. The PD-Pain Classification System (PD-PCS) was compared with classic pain measures (ie, brief pain inventory and McGill pain questionnaire [MPQ], PDQ-8 quality of life score, MDS-UPDRS scores, and nonmotor symptoms). 159 nondemented PD patients (disease duration 10.2 6 7.6 years) and 37 healthy controls were recruited in 4 centers. PDrelated pain was present in 122 patients (77%), with 24 (15%) suffering one or more syndromes at the same time. PD-related nociceptive, neuropathic, or nociplastic pain was diagnosed in 87 (55%), 25 (16%), or 35 (22%), respectively. Pain unrelated to PD was present in 35 (22%) patients. Overall, PD-PCS severity score significantly correlated with pain’s Brief Pain Inventory and MPQ ratings, presence of dyskinesia and motor fluctuations, PDQ-8 scores, depression, and anxiety measures. Moderate intrarater and interrater reliability was observed. The PD-PCS is a valid and reliable tool for differentiating PD-related pain from PD-unrelated pain. It detects and scores mechanistic pain subtypes in a pragmatic and treatment-oriented approach, unifying previous classifications of PD-pain.
Palabras clave: Parkinson's Disease , Pain , Clinical rating scale , Validation
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 479.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/171492
URL: https://journals.lww.com/10.1097/j.pain.0000000000002107
DOI: http://dx.doi.org/10.1097/j.pain.0000000000002107
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Mylius, Veit; Perez Lloret, Santiago; Cury, Rubens G.; Teixeira, Manoel J.; Barbosa, Victor R.; et al.; The Parkinson disease pain classification system: Results from an international mechanism-based classification approach; Lippincott Williams; Pain; 162; 4; 4-2021; 1201-1210
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES