Mostrar el registro sencillo del ítem

dc.contributor.author
Barrera, Yamila  
dc.contributor.author
Boechi, Leonardo  
dc.contributor.author
Jonckheere, Matthieu Thimothy Samson  
dc.contributor.author
Lefieux, Vincent  
dc.contributor.author
Picard, Dominique  
dc.contributor.author
Smucler, Ezequiel  
dc.contributor.author
Somacal, Agustín  
dc.contributor.author
Umfurer, Alfredo  
dc.date.available
2022-09-28T16:50:35Z  
dc.date.issued
2021-12  
dc.identifier.citation
Barrera, Yamila; Boechi, Leonardo; Jonckheere, Matthieu Thimothy Samson; Lefieux, Vincent; Picard, Dominique; et al.; Clustering high dimensional meteorological scenarios: Results and performance index; Elsevier Science Inc.; International Journal Of Approximate Reasoning; 139; 12-2021; 1-11  
dc.identifier.issn
0888-613X  
dc.identifier.uri
http://hdl.handle.net/11336/170788  
dc.description.abstract
The Réseau de Transport d'Electricité (RTE) is the French main electricity network operational manager and dedicates large number of resources and efforts towards understanding climate time series data for the purpose of energy optimization. A key challenge at the core of understanding the climate time series data is being able to detect common patterns between temperatures time series, and to choose representative scenarios for simulations, which in turn can be used for energy optimization. We addressed this challenge using climate time series provided by RTE, which is comprised of 200 different possible scenarios on a grid of geographical locations in France. We first show that the choice of the distance used for the clustering has a strong impact on the meaning of the results. Depending on the type of distance used, either spatial or temporal patterns prevail. Later we discuss the difficulty of fine-tuning distances with a dimension reduction procedure and we propose a methodology based on a carefully designed index.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Inc.  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
CLUSTERING  
dc.subject
PERFORMANCE INDEX  
dc.subject
TEMPERATURE TIME SERIES  
dc.subject
TIME SERIES  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Clustering high dimensional meteorological scenarios: Results and performance index  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-09T11:50:16Z  
dc.identifier.eissn
1873-4731  
dc.journal.volume
139  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Barrera, Yamila. No especifíca;  
dc.description.fil
Fil: Boechi, Leonardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.description.fil
Fil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.description.fil
Fil: Lefieux, Vincent. No especifíca;  
dc.description.fil
Fil: Picard, Dominique. Universite de Paris; Francia  
dc.description.fil
Fil: Smucler, Ezequiel. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Somacal, Agustín. No especifíca;  
dc.description.fil
Fil: Umfurer, Alfredo. No especifíca;  
dc.journal.title
International Journal Of Approximate Reasoning  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0888613X21001341?via%3Dihub  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.ijar.2021.08.007