Mostrar el registro sencillo del ítem

dc.contributor.author
Damiani, Tito  
dc.contributor.author
Alonso Salces, Rosa Maria  
dc.contributor.author
Aubone, Inés  
dc.contributor.author
Baeten, Vincent  
dc.contributor.author
Arnould, Quentin  
dc.contributor.author
Dall'Asta, Chiara  
dc.contributor.author
Fuselli, Sandra Rosa  
dc.contributor.author
Fernández Pierna, Juan Antonio  
dc.date.available
2022-09-21T20:36:03Z  
dc.date.issued
2020-10  
dc.identifier.citation
Damiani, Tito; Alonso Salces, Rosa Maria; Aubone, Inés; Baeten, Vincent; Arnould, Quentin; et al.; Vibrational Spectroscopy Coupled to a Multivariate Analysis Tiered Approach for Argentinean Honey Provenance Confirmation; MDPI; Foods; 9; 10; 10-2020; 1-15  
dc.identifier.uri
http://hdl.handle.net/11336/169846  
dc.description.abstract
In the present work, the provenance discrimination of Argentinian honeys was used as case study to compare the capabilities of three spectroscopic techniques as fast screening platforms for honey authentication purposes. Multifloral honeys were collected among three main honey-producing regions of Argentina over four harvesting seasons. Each sample was fingerprinted by FT-MIR, NIR and FT-Raman spectroscopy. The spectroscopic platforms were compared on the basis of the classification performance achieved under a supervised chemometric approach. Furthermore, low- mid- and high-level data fusion were attempted in order to enhance the classification results. Finally, the best-performing solution underwent to SIMCA modelling with the purpose of reproducing a food authentication scenario. All the developed classification models underwent to a “year-by-year” validation strategy, enabling a sound assessment of their long-term robustness and excluding any issue of model overfitting. Excellent classification scores were achieved by all the technologies and nearly perfect classification was provided by FT-MIR. All the data fusion strategies provided satisfying outcomes, with the mid- and high-level approaches outperforming the low-level data fusion. However, no significant advantage over the FT-MIR alone was obtained. SIMCA modelling of FT-MIR data produced highly sensitive and specific models and an overall prediction ability improvement was achieved when more harvesting seasons were used for the model calibration (86.7% sensitivity and 91.1% specificity). The results obtained in the present work suggested the major potential of FT-MIR for fingerprinting-based honey authentication and demonstrated that accuracy levels that may be commercially useful can be reached. On the other hand, the combination of multiple vibrational spectroscopic fingerprints represents a choice that should be carefully evaluated from a cost/benefit standpoint within the industrial context.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
CHEMOMETRICS  
dc.subject
DATA FUSION  
dc.subject
GEOGRAPHICAL ORIGIN  
dc.subject
HONEY  
dc.subject
VIBRATIONAL SPECTROSCOPY  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Vibrational Spectroscopy Coupled to a Multivariate Analysis Tiered Approach for Argentinean Honey Provenance Confirmation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-16T20:41:29Z  
dc.identifier.eissn
2304-8158  
dc.journal.volume
9  
dc.journal.number
10  
dc.journal.pagination
1-15  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Damiani, Tito. Universita Degli Studi Di Parma. Departamento de Alimentos y Drogas; Italia  
dc.description.fil
Fil: Alonso Salces, Rosa Maria. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Aubone, Inés. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Baeten, Vincent. Walloon Agricultural Research Centre; Bélgica  
dc.description.fil
Fil: Arnould, Quentin. Walloon Agricultural Research Centre; Bélgica  
dc.description.fil
Fil: Dall'Asta, Chiara. Universita Degli Studi Di Parma. Departamento de Alimentos y Drogas; Italia  
dc.description.fil
Fil: Fuselli, Sandra Rosa. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Fernández Pierna, Juan Antonio. Walloon Agricultural Research Centre; Bélgica  
dc.journal.title
Foods  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2304-8158/9/10/1450  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/foods9101450