Mostrar el registro sencillo del ítem
dc.contributor.author
Damiani, Tito
dc.contributor.author
Alonso Salces, Rosa Maria
dc.contributor.author
Aubone, Inés
dc.contributor.author
Baeten, Vincent
dc.contributor.author
Arnould, Quentin
dc.contributor.author
Dall'Asta, Chiara
dc.contributor.author
Fuselli, Sandra Rosa
dc.contributor.author
Fernández Pierna, Juan Antonio
dc.date.available
2022-09-21T20:36:03Z
dc.date.issued
2020-10
dc.identifier.citation
Damiani, Tito; Alonso Salces, Rosa Maria; Aubone, Inés; Baeten, Vincent; Arnould, Quentin; et al.; Vibrational Spectroscopy Coupled to a Multivariate Analysis Tiered Approach for Argentinean Honey Provenance Confirmation; MDPI; Foods; 9; 10; 10-2020; 1-15
dc.identifier.uri
http://hdl.handle.net/11336/169846
dc.description.abstract
In the present work, the provenance discrimination of Argentinian honeys was used as case study to compare the capabilities of three spectroscopic techniques as fast screening platforms for honey authentication purposes. Multifloral honeys were collected among three main honey-producing regions of Argentina over four harvesting seasons. Each sample was fingerprinted by FT-MIR, NIR and FT-Raman spectroscopy. The spectroscopic platforms were compared on the basis of the classification performance achieved under a supervised chemometric approach. Furthermore, low- mid- and high-level data fusion were attempted in order to enhance the classification results. Finally, the best-performing solution underwent to SIMCA modelling with the purpose of reproducing a food authentication scenario. All the developed classification models underwent to a “year-by-year” validation strategy, enabling a sound assessment of their long-term robustness and excluding any issue of model overfitting. Excellent classification scores were achieved by all the technologies and nearly perfect classification was provided by FT-MIR. All the data fusion strategies provided satisfying outcomes, with the mid- and high-level approaches outperforming the low-level data fusion. However, no significant advantage over the FT-MIR alone was obtained. SIMCA modelling of FT-MIR data produced highly sensitive and specific models and an overall prediction ability improvement was achieved when more harvesting seasons were used for the model calibration (86.7% sensitivity and 91.1% specificity). The results obtained in the present work suggested the major potential of FT-MIR for fingerprinting-based honey authentication and demonstrated that accuracy levels that may be commercially useful can be reached. On the other hand, the combination of multiple vibrational spectroscopic fingerprints represents a choice that should be carefully evaluated from a cost/benefit standpoint within the industrial context.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
CHEMOMETRICS
dc.subject
DATA FUSION
dc.subject
GEOGRAPHICAL ORIGIN
dc.subject
HONEY
dc.subject
VIBRATIONAL SPECTROSCOPY
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Vibrational Spectroscopy Coupled to a Multivariate Analysis Tiered Approach for Argentinean Honey Provenance Confirmation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-16T20:41:29Z
dc.identifier.eissn
2304-8158
dc.journal.volume
9
dc.journal.number
10
dc.journal.pagination
1-15
dc.journal.pais
Suiza
dc.journal.ciudad
Basilea
dc.description.fil
Fil: Damiani, Tito. Universita Degli Studi Di Parma. Departamento de Alimentos y Drogas; Italia
dc.description.fil
Fil: Alonso Salces, Rosa Maria. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Aubone, Inés. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina
dc.description.fil
Fil: Baeten, Vincent. Walloon Agricultural Research Centre; Bélgica
dc.description.fil
Fil: Arnould, Quentin. Walloon Agricultural Research Centre; Bélgica
dc.description.fil
Fil: Dall'Asta, Chiara. Universita Degli Studi Di Parma. Departamento de Alimentos y Drogas; Italia
dc.description.fil
Fil: Fuselli, Sandra Rosa. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina
dc.description.fil
Fil: Fernández Pierna, Juan Antonio. Walloon Agricultural Research Centre; Bélgica
dc.journal.title
Foods
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2304-8158/9/10/1450
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/foods9101450
Archivos asociados