Mostrar el registro sencillo del ítem
dc.contributor.author
Tandeo, Pierre
dc.contributor.author
Pulido, Manuel Arturo
dc.contributor.author
Lott, Francois
dc.date.available
2017-05-10T15:45:36Z
dc.date.issued
2015-01
dc.identifier.citation
Tandeo, Pierre; Pulido, Manuel Arturo; Lott, Francois; Offline parameter estimation using EnKF and maximum likelihood error covariance estimates: application to a subgrid-scale orography parametrization; John Wiley & Sons Ltd; Quarterly Journal Of The Royal Meteorological Society; 141; 687; 1-2015; 383-395
dc.identifier.issn
0035-9009
dc.identifier.uri
http://hdl.handle.net/11336/16202
dc.description.abstract
Recent work has shown that the parameters controlling parametrizations of the physical processes in climate models can be estimated from observations using filtering techniques. In this article, we propose an offline parameter estimation approach, without estimating the state of the climate model. It is based on the Ensemble Kalman Filter (EnKF) and an iterative estimation of the error covariance matrices and of the background state using a maximum likelihood algorithm. The technique is implemented in a subgrid-scale orography (SSO) parametrization scheme which works in a single vertical column. First, the parameter estimation technique is evaluated using twin experiments. Then, the technique is used with synthetic observations to estimate how the parameters of the SSO scheme should change when the resolution of the input orography dataset of a general circulation model is increased. Our analysis reveals that, when the resolution of the orography dataset increases, the scheme should take into account the dynamical sheltering that can occur at low levels between mountain peaks located within the same gridbox area.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Offline Parameter Estimation
dc.subject
Enkf
dc.subject
Em Algorithm
dc.subject
Subgrid-Scale Orography Parametrization
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Offline parameter estimation using EnKF and maximum likelihood error covariance estimates: application to a subgrid-scale orography parametrization
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-05-02T18:02:38Z
dc.identifier.eissn
1477-870X
dc.journal.volume
141
dc.journal.number
687
dc.journal.pagination
383-395
dc.journal.pais
Reino Unido
dc.journal.ciudad
Reading
dc.description.fil
Fil: Tandeo, Pierre. Lab-STICC- Pôle CID; Francia
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnologica; Argentina
dc.description.fil
Fil: Lott, Francois. Ecole Normale Superieure; Francia
dc.journal.title
Quarterly Journal Of The Royal Meteorological Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/qj.2357/abstract
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/qj.2357
Archivos asociados