Mostrar el registro sencillo del ítem

dc.contributor.author
Tandeo, Pierre  
dc.contributor.author
Pulido, Manuel Arturo  
dc.contributor.author
Lott, Francois  
dc.date.available
2017-05-10T15:45:36Z  
dc.date.issued
2015-01  
dc.identifier.citation
Tandeo, Pierre; Pulido, Manuel Arturo; Lott, Francois; Offline parameter estimation using EnKF and maximum likelihood error covariance estimates: application to a subgrid-scale orography parametrization; John Wiley & Sons Ltd; Quarterly Journal Of The Royal Meteorological Society; 141; 687; 1-2015; 383-395  
dc.identifier.issn
0035-9009  
dc.identifier.uri
http://hdl.handle.net/11336/16202  
dc.description.abstract
Recent work has shown that the parameters controlling parametrizations of the physical processes in climate models can be estimated from observations using filtering techniques. In this article, we propose an offline parameter estimation approach, without estimating the state of the climate model. It is based on the Ensemble Kalman Filter (EnKF) and an iterative estimation of the error covariance matrices and of the background state using a maximum likelihood algorithm. The technique is implemented in a subgrid-scale orography (SSO) parametrization scheme which works in a single vertical column. First, the parameter estimation technique is evaluated using twin experiments. Then, the technique is used with synthetic observations to estimate how the parameters of the SSO scheme should change when the resolution of the input orography dataset of a general circulation model is increased. Our analysis reveals that, when the resolution of the orography dataset increases, the scheme should take into account the dynamical sheltering that can occur at low levels between mountain peaks located within the same gridbox area.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Offline Parameter Estimation  
dc.subject
Enkf  
dc.subject
Em Algorithm  
dc.subject
Subgrid-Scale Orography Parametrization  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Offline parameter estimation using EnKF and maximum likelihood error covariance estimates: application to a subgrid-scale orography parametrization  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-05-02T18:02:38Z  
dc.identifier.eissn
1477-870X  
dc.journal.volume
141  
dc.journal.number
687  
dc.journal.pagination
383-395  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Reading  
dc.description.fil
Fil: Tandeo, Pierre. Lab-STICC- Pôle CID; Francia  
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnologica; Argentina  
dc.description.fil
Fil: Lott, Francois. Ecole Normale Superieure; Francia  
dc.journal.title
Quarterly Journal Of The Royal Meteorological Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/qj.2357/abstract  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/qj.2357