Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions

Vladisauskas, MelinaIcon ; Belloli, Laouen Mayal LouanIcon ; Fernandez Slezak, DiegoIcon ; Goldin, Andrea PaulaIcon
Fecha de publicación: 03/2022
Editorial: Frontiers Media
Revista: Frontiers in Artificial Intelligence
ISSN: 2624-8212
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Naturales y Exactas

Resumen

Executive functions are a class of cognitive processes critical for purposeful goal-directed behavior. Cognitive training is the adequate stimulation of executive functions and has been extensively studied and applied for more than 20 years. However, there is still a lack of solid consensus in the scientific community about its potential to elicit consistent improvements in untrained domains. Individual differences are considered one of the most important factors of inconsistent reports on cognitive training benefits, as differences in cognitive functioning are both genetic and context-dependent, and might be affected by age and socioeconomic status. We here present a proof of concept based on the hypothesis that baseline individual differences among subjects would provide valuable information to predict the individual effectiveness of a cognitive training intervention. With a dataset from an investigation in which 73 6-year-olds trained their executive functions using an online software with a fixed protocol, freely available at www.matemarote.org.ar, we trained a support vector classifier that successfully predicted (average accuracy = 0.67, AUC = 0.707) whether a child would improve, or not, after the cognitive stimulation, using baseline individual differences as features. We also performed a permutation feature importance analysis that suggested that all features contribute equally to the model's performance. In the long term, this results might allow us to design better training strategies for those players who are less likely to benefit from the current training protocols in order to maximize the stimulation for each child.
Palabras clave: CHILDREN , COMPUTERIZED GAMES , EDUCATIONAL GAMES , EDUCATIONAL NEUROSCIENCE , INDIVIDUAL DIFFERENCES , MACHINE LEARNING , PERSONALIZED TRAINING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 451.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/161030
URL: https://www.frontiersin.org/articles/10.3389/frai.2022.788605/full
DOI: http://dx.doi.org/10.3389/frai.2022.788605
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Vladisauskas, Melina; Belloli, Laouen Mayal Louan; Fernandez Slezak, Diego; Goldin, Andrea Paula; A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions; Frontiers Media; Frontiers in Artificial Intelligence; 5; 3-2022; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES