Mostrar el registro sencillo del ítem

dc.contributor.author
Bianco, Ana Maria  
dc.contributor.author
Boente Boente, Graciela Lina  
dc.contributor.author
Rodrigues, Isabel  
dc.date.available
2017-05-02T18:01:43Z  
dc.date.issued
2013-02  
dc.identifier.citation
Bianco, Ana Maria; Boente Boente, Graciela Lina; Rodrigues, Isabel; Resistant estimators in Poisson and Gamma models with missing responses and an application to outlier detection; Elsevier Inc; Journal Of Multivariate Analysis; 114; 2-2013; 209-226  
dc.identifier.issn
0047-259X  
dc.identifier.uri
http://hdl.handle.net/11336/15863  
dc.description.abstract
When dealing with situations in which the responses are discrete or show some type of asymmetry, the linear model is not appropriate to establish the relation between the responses and the covariates. Generalized linear models serve this purpose, since they allow one to model the mean of the responses through a link function, linearly on the covariates. When atypical observations are present in the sample, robust estimators are useful to provide fair estimations as well as to build outlier detection rules. The focus of this paper is to define robust estimators for the regression parameter when missing data possibly occur in the responses. The estimators introduced turn out to be consistent under mild conditions. In particular, resistant methods for Poisson and Gamma models are given. A simulation study allows one to compare the behaviour of the classical and robust estimators, under different contamination schemes. The robustness of the proposed procedures is studied through the influence function, while asymptotic variances are derived from it. Besides, outlier detection rules are defined using the influence function. The procedure is also illustrated by analysing a real data set.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Fisher-Consistency  
dc.subject
Generalized Lnear Model  
dc.subject
Missing Data  
dc.subject
Outliers  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Resistant estimators in Poisson and Gamma models with missing responses and an application to outlier detection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-28T20:29:24Z  
dc.journal.volume
114  
dc.journal.pagination
209-226  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Rodrigues, Isabel. Technical University of Lisbon; Portugal  
dc.journal.title
Journal Of Multivariate Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmva.2012.08.008  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0047259X12002060