Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Kernel embedding of maps for Bayesian inference: the variational mapping particle filter

Pulido, Manuel ArturoIcon ; van Leeuwen, Peter Jan
Tipo del evento: Conferencia
Nombre del evento: EGU General Assembly
Fecha del evento: 08/04/2018
Institución Organizadora: European Geosciences Union;
Título de la revista: Geophysical Research Abstracts
Editorial: Copernicus Publications
ISSN: 1029-7006
Idioma: Inglés
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

Data assimilation for high-dimensional highly nonlinear systems is becoming crucial for several geosciences applications. In this work, a novel particle filter is introduced which aims to an efficient sampling of the posterior pdf in high-dimensional state spaces considering a limited number of particles. Particles are mapped from the proposal to the posterior density using the principles of optimal transport. The Kullback-Leibler divergence between the posterior density and the proposal divergence is minimised using variational principles, leading to an iterative gradient-descent like algorithm. A key ingredient of the mapping is that the transformations are embedded in a reproducing kernel Hilbert space which constrains the dimensions of the space for the optimal transport to the number of particles. Gradient information of the Kullback-Leibler divergence allows a quick convergence using well known gradient-based optimization algorithms from machine learning, adadelta and adam, which do not require cost function calculations. Evaluation of the method and comparison with a SIR filter is conducted as a proof-of-concept in the Lorenz-63 system, where the exact solution is known. No resampling is required even for long recursive implementations. The number of effective particles remains close to the total number of particles in all the recursions. Hence, the mapping particle filter does not suffer from sample impoverishment, even in highly nonlinear settings. Finally, results from experiments on a high-dimensional turbulent geophysical system will be presented, and the performance of the new method compared to other existing method will be discussed.
Palabras clave: STEIN GRADIENT , MONTE CARLO SEQUENTIAL
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 33.40Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/156122
URL: https://meetingorganizer.copernicus.org/EGU2018/EGU2018-3750.pdf
URL: https://www.geophysical-research-abstracts.net/egu2018.html
Colecciones
Eventos(IMIT)
Eventos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Citación
Kernel embedding of maps for Bayesian inference: the variational mapping particle filter; EGU General Assembly; Vienna; Austria; 2018; 1-1
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES