Mostrar el registro sencillo del ítem

dc.contributor.author
Monge, David A.  
dc.contributor.author
Pacini Naumovich, Elina Rocío  
dc.contributor.author
Mateos, Cristian  
dc.contributor.author
Alba, Enrique  
dc.contributor.author
Garcia Garino, Carlos Gabriel  
dc.date.available
2022-04-26T18:19:23Z  
dc.date.issued
2020-01  
dc.identifier.citation
Monge, David A.; Pacini Naumovich, Elina Rocío; Mateos, Cristian; Alba, Enrique; Garcia Garino, Carlos Gabriel; CMI: An online multi-objective genetic autoscaler for scientific and engineering workflows in cloud infrastructures with unreliable virtual machines; Elsevier; Journal Of Network And Computer Applications; 149; 1-2020; 1-14  
dc.identifier.issn
1084-8045  
dc.identifier.uri
http://hdl.handle.net/11336/155805  
dc.description.abstract
Cloud Computing is becoming the leading paradigm for executing scientific and engineering workflows. The large-scale nature of the experiments they model and their variable workloads make clouds the ideal execution environment due to prompt and elastic access to huge amounts of computing resources. Autoscalers are middleware-level software components that allow scaling up and down the computing platform by acquiring or terminating virtual machines (VM) at the time that workflow tasks are being scheduled. In this work we propose a novel online multi-objective autoscaler for workflows denominated Cloud Multi-objective Intelligence (CMI), which aims at the minimization of makespan, monetary cost and the potential impact of errors derived from unreliable VMs. Besides, this problem is subject to monetary budget constraints. CMI is responsible for periodically solving the autoscaling problems encountered along with the execution of a workflow. Simulation experiments on four well-known workflows exhibit that CMI significantly outperforms a state-of-the-art autoscaler of similar characteristics called Spot Instances Aware Autoscaling (SIAA). These results convey a solid base for deepening in the study of other meta-heuristic methods for autoscaling workflow applications using cheap but unreliable infrastructures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CLOUD COMPUTING  
dc.subject
AUTOSCALING  
dc.subject
SCIENTIFIC WORKFLOWS  
dc.subject
MULTI-OBJECTIVE OPTIMIZATION  
dc.subject
EVOLUTIONARY ALGORITHM  
dc.subject
UNRELIABLE VM INSTANCES  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
CMI: An online multi-objective genetic autoscaler for scientific and engineering workflows in cloud infrastructures with unreliable virtual machines  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-01-25T14:43:30Z  
dc.journal.volume
149  
dc.journal.pagination
1-14  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Monge, David A.. Universidad Nacional de Cuyo; Argentina  
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Mateos, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Alba, Enrique. Universidad de Málaga; España  
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo; Argentina  
dc.journal.title
Journal Of Network And Computer Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1084804519303248  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jnca.2019.102464