Artículo
CMI: An online multi-objective genetic autoscaler for scientific and engineering workflows in cloud infrastructures with unreliable virtual machines
Monge, David A.; Pacini Naumovich, Elina Rocío
; Mateos, Cristian; Alba, Enrique; Garcia Garino, Carlos Gabriel
Fecha de publicación:
01/2020
Editorial:
Elsevier
Revista:
Journal Of Network And Computer Applications
ISSN:
1084-8045
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Cloud Computing is becoming the leading paradigm for executing scientific and engineering workflows. The large-scale nature of the experiments they model and their variable workloads make clouds the ideal execution environment due to prompt and elastic access to huge amounts of computing resources. Autoscalers are middleware-level software components that allow scaling up and down the computing platform by acquiring or terminating virtual machines (VM) at the time that workflow tasks are being scheduled. In this work we propose a novel online multi-objective autoscaler for workflows denominated Cloud Multi-objective Intelligence (CMI), which aims at the minimization of makespan, monetary cost and the potential impact of errors derived from unreliable VMs. Besides, this problem is subject to monetary budget constraints. CMI is responsible for periodically solving the autoscaling problems encountered along with the execution of a workflow. Simulation experiments on four well-known workflows exhibit that CMI significantly outperforms a state-of-the-art autoscaler of similar characteristics called Spot Instances Aware Autoscaling (SIAA). These results convey a solid base for deepening in the study of other meta-heuristic methods for autoscaling workflow applications using cheap but unreliable infrastructures.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Monge, David A.; Pacini Naumovich, Elina Rocío; Mateos, Cristian; Alba, Enrique; Garcia Garino, Carlos Gabriel; CMI: An online multi-objective genetic autoscaler for scientific and engineering workflows in cloud infrastructures with unreliable virtual machines; Elsevier; Journal Of Network And Computer Applications; 149; 1-2020; 1-14
Compartir
Altmétricas