Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Scheduling deferrable electric appliances in Smart Homes: a bi-objective stochastic optimization approach

Rossit, Diego GabrielIcon ; Nesmachnow, Sergio; Toutouh, Jamal; Luna, Francisco
Fecha de publicación: 08/11/2021
Editorial: American Institute of Mathematical Sciences
Revista: Mathematical Biosciences And Engineering
ISSN: 1547-1063
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

In the last decades, cities have increased the number of activities and services that depends on an efficient and reliable electricity service. In particular, households have had a sustained increase of electricity consumption to perform many residential activities. Thus, providing efficient methods to enhance the decision making processes in demand-side management is crucial for achieving a more sustainable usage of the available resources. In this line of work, this article presents an optimization model to schedule deferrable appliances in households, which simultaneously optimize two conflicting objectives: the minimization of the cost of electricity bill and the maximization of users satisfaction with the consumed energy. Since users satisfaction is based on human preferences, it is subjected to a great variability and, thus, stochastic resolution methods have to be applied to solve the proposed model. In turn, a maximum allowable power consumption value is included as constraint, to account for the maximum power contracted for each household or building. Two different algorithms are proposed: a simulation-optimization approach and a greedy heuristic. Both methods are evaluated over problem instances based on real-world data, accounting for different household types. The obtained results show the competitiveness of the proposed approach, which are able to compute different compromising solutions accounting for the trade-off between these two conflicting optimization criteria in reasonable computing times. The simulation-optimization obtains better solutions, outperforming and dominating the greedy heuristic in all considered scenarios.
Palabras clave: SMART CITIES , SMART HOMES , URBAN DATA ANALYSIS , HOUSEHOLD ENERGY PLANNING , MIXED-INTEGER PROGRAMMING , MONTE CARLO SIMULATION , BI-OBJECTIVE OPTIMIZATION , GREEDY HEURISTIC , STOCHASTIC OPTIMIZATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 5.933Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/152119
URL: https://www.aimspress.com/article/doi/10.3934/mbe.2022002
DOI: http://dx.doi.org/10.3934/mbe.2022002
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Rossit, Diego Gabriel; Nesmachnow, Sergio; Toutouh, Jamal; Luna, Francisco; Scheduling deferrable electric appliances in Smart Homes: a bi-objective stochastic optimization approach; American Institute of Mathematical Sciences; Mathematical Biosciences And Engineering; 19; 1; 8-11-2021; 34-65
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES