Mostrar el registro sencillo del ítem

dc.contributor.author
Rossit, Diego Gabriel  
dc.contributor.author
Toncovich, Adrián Andrés  
dc.contributor.author
Fermani, Matías  
dc.date.available
2022-02-10T14:45:02Z  
dc.date.issued
2021-11-03  
dc.identifier.citation
Rossit, Diego Gabriel; Toncovich, Adrián Andrés; Fermani, Matías; Routing in waste collection: a simulated annealing algorithm for an Argentinean case study; American Institute of Mathematical Sciences; Mathematical Biosciences And Engineering; 18; 6; 03-11-2021; 9579-9605  
dc.identifier.issn
1547-1063  
dc.identifier.uri
http://hdl.handle.net/11336/151767  
dc.description.abstract
The management of the collection of Municipal Solid Waste is a complex task for local governments since it consumes a large portion of their budgets. Thus, the use of computer-aided tools to support decision-making can contribute to improve the efficiency of the system and reduce the associated costs, especially in developing countries, which usually suffer from a shortage of resources. In the present work, a simulated annealing algorithm is proposed to address the problem of designing the routes of waste collection vehicles. The proposed algorithm is compared to a commercial solver based on a mixed-integer programming formulation and two other metaheuristic algorithms, i.e., a state-of-the-art large neighborhood search and a genetic algorithm. The evaluation is carried out on both a well-known benchmark from the literature and real instances of the Argentinean city of Bahía Blanca. The proposed algorithm was able to solve all the instances, having a performance similar to the large neighborhood procedure, while the genetic algorithm showed the worst results. The simulated annealing algorithm was also able to improve the solutions of the solver in many instances of the real dataset.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Mathematical Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MUNICIPAL SOLID WASTE  
dc.subject
WASTE COLLECTION  
dc.subject
VEHICLE ROUTING PROBLEM  
dc.subject
SIMULATED ANNEALING  
dc.subject
MIXED-INTEGER PROGRAMMING  
dc.subject
LARGE NEIGHBORHOOD SEARCH  
dc.subject
GENETIC ALGORITHM  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Routing in waste collection: a simulated annealing algorithm for an Argentinean case study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-03T19:23:14Z  
dc.identifier.eissn
1551-0018  
dc.journal.volume
18  
dc.journal.number
6  
dc.journal.pagination
9579-9605  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Springfield  
dc.description.fil
Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina  
dc.description.fil
Fil: Toncovich, Adrián Andrés. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina  
dc.description.fil
Fil: Fermani, Matías. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina  
dc.journal.title
Mathematical Biosciences And Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.aimspress.com/article/doi/10.3934/mbe.2021470  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/mbe.2021470