Mostrar el registro sencillo del ítem
dc.contributor.author
Rossit, Diego Gabriel
dc.contributor.author
Toncovich, Adrián Andrés
dc.contributor.author
Fermani, Matías
dc.date.available
2022-02-10T14:45:02Z
dc.date.issued
2021-11-03
dc.identifier.citation
Rossit, Diego Gabriel; Toncovich, Adrián Andrés; Fermani, Matías; Routing in waste collection: a simulated annealing algorithm for an Argentinean case study; American Institute of Mathematical Sciences; Mathematical Biosciences And Engineering; 18; 6; 03-11-2021; 9579-9605
dc.identifier.issn
1547-1063
dc.identifier.uri
http://hdl.handle.net/11336/151767
dc.description.abstract
The management of the collection of Municipal Solid Waste is a complex task for local governments since it consumes a large portion of their budgets. Thus, the use of computer-aided tools to support decision-making can contribute to improve the efficiency of the system and reduce the associated costs, especially in developing countries, which usually suffer from a shortage of resources. In the present work, a simulated annealing algorithm is proposed to address the problem of designing the routes of waste collection vehicles. The proposed algorithm is compared to a commercial solver based on a mixed-integer programming formulation and two other metaheuristic algorithms, i.e., a state-of-the-art large neighborhood search and a genetic algorithm. The evaluation is carried out on both a well-known benchmark from the literature and real instances of the Argentinean city of Bahía Blanca. The proposed algorithm was able to solve all the instances, having a performance similar to the large neighborhood procedure, while the genetic algorithm showed the worst results. The simulated annealing algorithm was also able to improve the solutions of the solver in many instances of the real dataset.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Mathematical Sciences
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MUNICIPAL SOLID WASTE
dc.subject
WASTE COLLECTION
dc.subject
VEHICLE ROUTING PROBLEM
dc.subject
SIMULATED ANNEALING
dc.subject
MIXED-INTEGER PROGRAMMING
dc.subject
LARGE NEIGHBORHOOD SEARCH
dc.subject
GENETIC ALGORITHM
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Routing in waste collection: a simulated annealing algorithm for an Argentinean case study
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-12-03T19:23:14Z
dc.identifier.eissn
1551-0018
dc.journal.volume
18
dc.journal.number
6
dc.journal.pagination
9579-9605
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Springfield
dc.description.fil
Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
dc.description.fil
Fil: Toncovich, Adrián Andrés. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
dc.description.fil
Fil: Fermani, Matías. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
dc.journal.title
Mathematical Biosciences And Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.aimspress.com/article/doi/10.3934/mbe.2021470
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/mbe.2021470
Archivos asociados