Mostrar el registro sencillo del ítem
dc.contributor.author
Yuchechen, Adrian Enrique
dc.contributor.author
Lakkis, Susan Gabriela
dc.contributor.author
Caferri, Agustín
dc.contributor.author
Canziani, Pablo Osvaldo
dc.contributor.author
Muszkats, Juan Pablo
dc.date.available
2022-02-04T11:57:28Z
dc.date.issued
2020-09
dc.identifier.citation
Yuchechen, Adrian Enrique; Lakkis, Susan Gabriela; Caferri, Agustín; Canziani, Pablo Osvaldo; Muszkats, Juan Pablo; A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery; Molecular Diversity Preservation International; Remote Sensing; 12; 18; 9-2020; 1-30
dc.identifier.issn
2072-4292
dc.identifier.uri
http://hdl.handle.net/11336/151331
dc.description.abstract
An unsupervised k-means/k-means++ clustering algorithm was implemented on daily images of standardized anomalies of brightness temperature (Tb) derived from the Geostationary Operational Environmental Satellite (GOES)-13 infrared data for the period 1 December 2010 to 30 November 2016. The goal was to decompose each individual Tb image into four clusters that captures the characteristics of different cloud regimes. The extracted clusters were ordered by their mean value in an ascending fashion so that the lower the cluster order, the higher the clouds they represent. A linear regression between temperature and height with temperature used as the predictor was conducted to estimate cloud top heights (CTHs) from the Tb values. The analysis of the results was performed in two different ways: sample dates and seasonal features. Cluster 1 is the less dominant one, representing clouds with the highest tops and variabilities. Cluster 4 is the most dominant one and represents a cloud regime that spans the lowest 2 km of the troposphere. Clusters 2 and 3 are entangled in the sense that both have their CTHs spanning the middle troposphere. Correlations between the monthly time series of the number of pixels in each cluster and of the entropy with several circulation indices are also introduced. Additionally, a fractal-related analysis was carried out on cluster 1 in order to resolve cirrus and cumulonimbus.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Molecular Diversity Preservation International
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BRIGHTNESS TEMPERATURE
dc.subject
CLOUD COVER
dc.subject
CLOUD REGIMES
dc.subject
CLUSTERING
dc.subject
GOES IR IMAGERY
dc.subject
KMEANS
dc.subject
KMEANS++
dc.subject
SOUTH AMERICA
dc.subject.classification
Ciencias Medioambientales
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-01-25T15:03:33Z
dc.journal.volume
12
dc.journal.number
18
dc.journal.pagination
1-30
dc.journal.pais
Suiza
dc.journal.ciudad
Basilea
dc.description.fil
Fil: Yuchechen, Adrian Enrique. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Caferri, Agustín. No especifíca;
dc.description.fil
Fil: Canziani, Pablo Osvaldo. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Muszkats, Juan Pablo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Remote Sensing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/12/18/2991
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/rs12182991
Archivos asociados