Artículo
Robust estimation for nonparametric generalized regression
Fecha de publicación:
12/2011
Editorial:
Elsevier
Revista:
Statistics & Probability Letters
ISSN:
0167-7152
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper focuses on nonparametric regression estimation for the parameters of a discrete or continuous distribution, such as the Poisson or Gamma distributions, when anomalous data are present. The proposal is a natural extension of robust methods developed in the setting of parametric generalized linear models. Robust estimators bounding either large values of the deviance or of the Pearson residuals are introduced and their asymptotic behaviour is derived. Through a Monte Carlo study, for the Poisson and Gamma distributions, the finite properties of the proposed procedures are investigated and their performance is compared with that of the classical ones. A resistant cross-validation method to choose the smoothing parameter is also considered.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Bianco, Ana Maria; Boente Boente, Graciela Lina; Sombielle, Susana; Robust estimation for nonparametric generalized regression; Elsevier; Statistics & Probability Letters; 81; 12; 12-2011; 1986-1994
Compartir
Altmétricas