Mostrar el registro sencillo del ítem
dc.contributor.author
Olivieri, Alejandro Cesar

dc.contributor.author
Bortolato, Santiago Andres

dc.contributor.author
Allegrini, Franco

dc.contributor.other
Muñoz de la Peña, Arsenio
dc.contributor.other
Escandar, Graciela Monica

dc.contributor.other
Olivieri, Alejandro Cesar

dc.contributor.other
Goicoechea, Hector Casimiro

dc.date.available
2021-12-14T14:27:09Z
dc.date.issued
2015
dc.identifier.citation
Olivieri, Alejandro Cesar; Bortolato, Santiago Andres; Allegrini, Franco; Figures of Merit in Multiway Calibration; Elsevier; 29; 2015; 541-575
dc.identifier.isbn
978-0-444-63527-3
dc.identifier.issn
0922-3487
dc.identifier.uri
http://hdl.handle.net/11336/148726
dc.description.abstract
As previously presented in this book, measuring and processing multiway data provides analytical chemists with a number of advantages, such as (1) improved sensitivity, derived from noise averaging multiple measurements of redundant data, (2) increased selectivity, because each new data mode provides an additional degree of partial selectivity, and (3) modeling the analyte contribution and its quantitative determination in the presence of unknown interferences, absent in calibration samples (second-order advantage) [1]. Regarding items 1 and 2, a question which immediately emerges is how figures of merit like sensitivity, selectivity, and even the limit of detection (LOD) should be estimated when dealing with multivariate and multiway data? As analytical chemistry is the science of chemical measurements, finding a reliable way to judge them properly is not a minor issue, and this is the reason why this chapter is focused on trying to give a response to this question.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Analytical figures of merit
dc.subject
Univariate
dc.subject
Multivariate and multiway calibrations
dc.subject
Multiway algorithms
dc.subject
Noise structures
dc.subject.classification
Química Analítica

dc.subject.classification
Ciencias Químicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Figures of Merit in Multiway Calibration
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2021-06-07T16:11:24Z
dc.journal.volume
29
dc.journal.pagination
541-575
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
dc.description.fil
Fil: Bortolato, Santiago Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
dc.description.fil
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/B978-0-444-63527-3.00013-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780444635273000138
dc.conicet.paginas
34
dc.source.titulo
Data Handling in Science and Technology: Fundamentals and Analytical Applications of Multiway Calibration
Archivos asociados