Mostrar el registro sencillo del ítem

dc.contributor.author
Olivieri, Alejandro Cesar  
dc.contributor.author
Bortolato, Santiago Andres  
dc.contributor.author
Allegrini, Franco  
dc.contributor.other
Muñoz de la Peña, Arsenio  
dc.contributor.other
Escandar, Graciela Monica  
dc.contributor.other
Olivieri, Alejandro Cesar  
dc.contributor.other
Goicoechea, Hector Casimiro  
dc.date.available
2021-12-14T14:27:09Z  
dc.date.issued
2015  
dc.identifier.citation
Olivieri, Alejandro Cesar; Bortolato, Santiago Andres; Allegrini, Franco; Figures of Merit in Multiway Calibration; Elsevier; 29; 2015; 541-575  
dc.identifier.isbn
978-0-444-63527-3  
dc.identifier.issn
0922-3487  
dc.identifier.uri
http://hdl.handle.net/11336/148726  
dc.description.abstract
As previously presented in this book, measuring and processing multiway data provides analytical chemists with a number of advantages, such as (1) improved sensitivity, derived from noise averaging multiple measurements of redundant data, (2) increased selectivity, because each new data mode provides an additional degree of partial selectivity, and (3) modeling the analyte contribution and its quantitative determination in the presence of unknown interferences, absent in calibration samples (second-order advantage) [1]. Regarding items 1 and 2, a question which immediately emerges is how figures of merit like sensitivity, selectivity, and even the limit of detection (LOD) should be estimated when dealing with multivariate and multiway data? As analytical chemistry is the science of chemical measurements, finding a reliable way to judge them properly is not a minor issue, and this is the reason why this chapter is focused on trying to give a response to this question.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Analytical figures of merit  
dc.subject
Univariate  
dc.subject
Multivariate and multiway calibrations  
dc.subject
Multiway algorithms  
dc.subject
Noise structures  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Figures of Merit in Multiway Calibration  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2021-06-07T16:11:24Z  
dc.journal.volume
29  
dc.journal.pagination
541-575  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.description.fil
Fil: Bortolato, Santiago Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.description.fil
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/B978-0-444-63527-3.00013-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780444635273000138  
dc.conicet.paginas
34  
dc.source.titulo
Data Handling in Science and Technology: Fundamentals and Analytical Applications of Multiway Calibration