Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Paul Hertz’s Systems of Propositions As a Proof-theoretical Conception of Logic

Título del libro: Advances in Natural Deduction: A Celebration of Dag Prawitz's Work

Legris, JavierIcon
Otros responsables: Pereira, Luis Carlos; Hermann Haeusler, Edward; da Paiva, Valeria
Fecha de publicación: 2014
Editorial: Springer
ISBN: 978-94-007-7547-3
Idioma: Inglés
Clasificación temática:
Filosofía, Historia y Filosofía de la Ciencia y la Tecnología

Resumen

Paul Hertz was an outstanding German physicist, who also devoted himself to mathematical logic and wrote a series of papers that remained rather unnoticed, even if they influenced the development of proof theory and particularly Gentzen's work. This paper aims to examine Hertz's logical theory placing it in its historical context and remarking its influence in Gentzen´s sequent calculus. The analysis of the formal structure of proofs was one of Hertz´s most important achievements and it can be regarded as an anticipation of a “theory of proofs” in the current sense. But also, it can be asserted that Hertz´s systems played the role of a bridge between traditional formal logic and Gentzen´s logical work. Hertz´s philosophical ideas concerning the nature of logic and its place in scientific knowledge will be also analysed in this paper. Paul Hertz was an outstanding German physicist, who also devoted himself to mathematical logic and wrote a series of papers that remained rather unnoticed, even if they influenced the development of proof theory and particularly Gentzen´s work. This paper aims to examine Hertz´s logical theory placing it in its historical context and remarking its influence in Gentzen´s sequent calculus. The analysis of the formal structure of proofs was one of Hertz´s most important achievements and it can be regarded as an anticipation of a theory of proofs in the current sense. But also, it can be asserted that Hertz´s systems played the role of a bridge between traditional formal logic and Gentzen´s logical work. Hertz´s philosophical ideas concerning the nature of logic and its place in scientific knowledge will be also analysed in this paper.
Palabras clave: Proof-Theory , History of Logic , Philosophy of Logic , Paul Hertz
Ver el registro completo
 
Archivos asociados
Tamaño: 459.7Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/137673
URL: https://link.springer.com/chapter/10.1007/978-94-007-7548-0_5
DOI: http://dx.doi.org/10.1007/978-94-007-7548-0_5
Colecciones
Capítulos de libros(IIEP)
Capítulos de libros de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Citación
Legris, Javier; Paul Hertz’s Systems of Propositions As a Proof-theoretical Conception of Logic; Springer; 2014; 93-101
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES