Artículo
A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection
Fecha de publicación:
10/2020
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
IEEE Latin America Transactions
ISSN:
1548-0992
Idioma:
Español
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Gene selection aims at identifying a -small- subset of informative genes from the initial data to obtain high predictive accuracy for classification in human cancers. Gene selection can be considered as a combinatorial search problem and thus can be conveniently handled with optimization methods. hl{This paper proposes a Memetic Cellular Genetic Algorithm (MCGA) to solve the Feature Selection problem of cancer microarray datasets.} Benchmark gene expression datasets, i.e., colon, lymphoma, and leukaemia available in the literature were used for experimentation. MCGA is compared with other well-known metaheuristic´ strategies. The results demonstrate that our proposal can provide efficient solutions to find a minimal subset of the genes.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Rojas, Matias Gabriel; Olivera, Ana Carolina; Carballido, Jessica Andrea; Vidal, Pablo Javier; A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 18; 11; 10-2020; 1874-1883
Compartir