Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

A Supervised Term-Weighting Method and its Application to Variable Extraction from Digital Media

Maisonnave, MarianoIcon ; Delbianco, Fernando AndrésIcon ; Tohmé, Fernando AbelIcon ; Maguitman, Ana GabrielaIcon
Tipo del evento: Simposio
Nombre del evento: XIX Simposio Argentino de Inteligencia Artificial
Fecha del evento: 03/09/2018
Institución Organizadora: Universidad de Palermo. Facultad de Ingeniería. Asociación Argentina de Inteligencia Artificial. Sociedad Argentina de Informática;
Título de la revista: Anales de ASAI 2018 Simposio Argentino de Inteligencia Artificial
Editorial: Sociedad Argentina de Informática
ISSN: 2451-7585
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

Successful modeling and prediction depend on effective methods for the extraction of domain-relevant variables. This paper proposes a methodology for identifying domain-specific terms. The proposed methodology relies on a collection of documents labeled as relevant or irrelevant to the domain under analysis. Based on the labeled document collection, we propose a supervised technique that weights terms based on their descriptive and discriminating power. Finally, the descriptive and discriminating values are combined into a general measure that, through the use of an adjustable parameter, allows to independently favor different aspects of retrieval such as maximizing precision or recall, or achieving a balance between both of them. The proposed technique is applied to the economic domain and is empirically evaluated through a human-subject experiment involving experts and non-experts in Economy. It is also evaluated as a term-weighting technique for query-term selection showing promising results. We finally illustrate the potential of the proposal as a first step for identifying different types of associations between words.
Palabras clave: TERM WEIGHTING , VARIABLE EXTRACTION , INFORMATION RETRIEVA , QUERY TERM SELECTION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.440Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/135484
URL: https://47jaiio.sadio.org.ar/index.php?q=asai
URL: https://47jaiio.sadio.org.ar/index.php?q=node/81
URL: https://47jaiio.sadio.org.ar/sites/default/files/ASAI-07.pdf
Colecciones
Eventos(INMABB)
Eventos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
A Supervised Term-Weighting Method and its Application to Variable Extraction from Digital Media; XIX Simposio Argentino de Inteligencia Artificial; Buenos Aires; Argentina; 2018; 40-53
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES