Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Information flow in multi-scale dynamical systems using ordinal symbolic analysis

Pulido, Manuel ArturoIcon ; Rosa, Santiago; van Leeuwen, Peter Jan
Tipo del evento: Congreso
Nombre del evento: EGU General Assembly 2019
Fecha del evento: 07/04/2019
Institución Organizadora: European Geosciences Union;
Título de la revista: Geophysical Research Abstracts
Editorial: Copernicus Publications
ISSN: 1029-7006
e-ISSN: 1607-7962
Idioma: Inglés
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

In this work, information flow quantifiers between variables of multi-scale dynamical systems simulating atmospheric processes are evaluated in non-linear and non-gaussian statistical regimes. The atmosphere is a spatially extended, highly non-linear dynamical system with complex interactions between the different dynamical scales, as well as between the different physical processes involved in it. We evaluate whether conditional mutual information and transfer entropy are able to detect and quantify causal interactions between large-scale and small-scale dynamics. As simple prototype models of these atmospheric interactions, we use a two-scale Lorenz 96 model and a two dimensional barotropic model. In order to obtain the information quantifiers, temporal series from the experiments are examined with ordinal symbolic analysis using the Band-Pompe symbolic reduction in the data signal and using the Kraskov-Stogbauer-Grassberger method to estimate mutual information using k-nearest neighbors. Comparing different experiments, we show that the interactions between small-scale variables and large-scale variables may introduce spatial long-range information flows. We also found that conditional mutual information is able to detect energy and enstrophy cascades in the barotropic model. Ordinal symbolic analysis allows us to obtain robust measures and may be efficiently applied to long temporal series with correlations between several processes. We conclude that information measures are useful tools to establish observational information flows in the atmosphere. These tools may be helpful to quantify the role of small - scale processes and constraining stochastic parameterizations.
Palabras clave: TRANSFER ENTROPY , MUTUAL INFORMATION , SHANNON INFORMATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 32.72Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/133384
URL: https://meetingorganizer.copernicus.org/EGU2019/EGU2019-5228.pdf
URL: https://meetingorganizer.copernicus.org/EGU2019/sessionprogramme
Colecciones
Eventos(IMIT)
Eventos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Citación
Information flow in multi-scale dynamical systems using ordinal symbolic analysis; EGU General Assembly 2019; Vinna; Austria; 2019; 1-1
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES