Mostrar el registro sencillo del ítem

dc.contributor.author
Magallanes, Jorge Federico  
dc.contributor.author
Garcia Reiriz, Alejandro Gabriel  
dc.contributor.author
Líberman, Sara  
dc.contributor.author
Zupan, Jure  
dc.date.available
2021-06-04T23:49:25Z  
dc.date.issued
2011-06  
dc.identifier.citation
Magallanes, Jorge Federico; Garcia Reiriz, Alejandro Gabriel; Líberman, Sara; Zupan, Jure; Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients; John Wiley & Sons Ltd; Journal of Chemometrics; 25; 6; 6-2011; 340-348  
dc.identifier.issn
0886-9383  
dc.identifier.uri
http://hdl.handle.net/11336/133268  
dc.description.abstract
The irradiation dose in tumor and healthy tissue of a boron neutron capture therapy (BNCT) patient depends on the boron concentration in blood. In most treatments, this concentration is experimentally determined before and after irradiation but not while irradiation is being carried out because it is troublesome to take the blood samples when the patient remains isolated in the irradiation room. A few models are used to predict the boron profile during that period, which until now involves a biexponential decay. For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in the human body during BNCT treatment, a Kohonen-based neural network method is suggested. The results of various (20×20×40 Kohonen network) models based on different trainings on the data set of 67 concentration sets (profiles) are described and discussed. The prediction ability and robustness of the modeling method were tested by the leave-one-out procedure. The results show that the method is very robust and mostly independent of small variations. It can yield predictions, root mean squared prediction error (RMSPE), with a maximum of 3.30μgg-1 for the present cases. In order to show the abilities and limitations of the method, the best and the few worst results are discussed in detail. It should be emphasized that one of the main advantages of this method is the automatic improvement in the prediction ability and robustness of the model by feeding it with an increasing number of data.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORKS  
dc.subject
BORON NEUTRON CAPTURE THERAPY (BNCT)  
dc.subject
KOHONEN  
dc.subject
TUMOR IRRADIATION  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-02-18T15:22:54Z  
dc.journal.volume
25  
dc.journal.number
6  
dc.journal.pagination
340-348  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
LOndres  
dc.description.fil
Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina  
dc.description.fil
Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.description.fil
Fil: Líberman, Sara. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina  
dc.description.fil
Fil: Zupan, Jure. National Institute of Chemistry; Eslovenia  
dc.journal.title
Journal of Chemometrics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/cem.1383  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/cem.1383