Mostrar el registro sencillo del ítem
dc.contributor.author
Magallanes, Jorge Federico
dc.contributor.author
Garcia Reiriz, Alejandro Gabriel
dc.contributor.author
Líberman, Sara
dc.contributor.author
Zupan, Jure
dc.date.available
2021-06-04T23:49:25Z
dc.date.issued
2011-06
dc.identifier.citation
Magallanes, Jorge Federico; Garcia Reiriz, Alejandro Gabriel; Líberman, Sara; Zupan, Jure; Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients; John Wiley & Sons Ltd; Journal of Chemometrics; 25; 6; 6-2011; 340-348
dc.identifier.issn
0886-9383
dc.identifier.uri
http://hdl.handle.net/11336/133268
dc.description.abstract
The irradiation dose in tumor and healthy tissue of a boron neutron capture therapy (BNCT) patient depends on the boron concentration in blood. In most treatments, this concentration is experimentally determined before and after irradiation but not while irradiation is being carried out because it is troublesome to take the blood samples when the patient remains isolated in the irradiation room. A few models are used to predict the boron profile during that period, which until now involves a biexponential decay. For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in the human body during BNCT treatment, a Kohonen-based neural network method is suggested. The results of various (20×20×40 Kohonen network) models based on different trainings on the data set of 67 concentration sets (profiles) are described and discussed. The prediction ability and robustness of the modeling method were tested by the leave-one-out procedure. The results show that the method is very robust and mostly independent of small variations. It can yield predictions, root mean squared prediction error (RMSPE), with a maximum of 3.30μgg-1 for the present cases. In order to show the abilities and limitations of the method, the best and the few worst results are discussed in detail. It should be emphasized that one of the main advantages of this method is the automatic improvement in the prediction ability and robustness of the model by feeding it with an increasing number of data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL NEURAL NETWORKS
dc.subject
BORON NEUTRON CAPTURE THERAPY (BNCT)
dc.subject
KOHONEN
dc.subject
TUMOR IRRADIATION
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-02-18T15:22:54Z
dc.journal.volume
25
dc.journal.number
6
dc.journal.pagination
340-348
dc.journal.pais
Reino Unido
dc.journal.ciudad
LOndres
dc.description.fil
Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
dc.description.fil
Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
dc.description.fil
Fil: Líberman, Sara. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
dc.description.fil
Fil: Zupan, Jure. National Institute of Chemistry; Eslovenia
dc.journal.title
Journal of Chemometrics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/cem.1383
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/cem.1383
Archivos asociados