Mostrar el registro sencillo del ítem
dc.contributor.author
Pacetti, Ariel Martín
dc.date.available
2021-02-17T13:47:59Z
dc.date.issued
2007-12
dc.identifier.citation
Pacetti, Ariel Martín; On the embedding problem for 2+s4 representations; American Mathematical Society; Mathematics of Computation; 74; 260; 12-2007; 2063-2075
dc.identifier.issn
0025-5718
dc.identifier.uri
http://hdl.handle.net/11336/125780
dc.description.abstract
Let 2+S4 denote the double cover of S4 corresponding to the element in H2(S4, Z/2Z) where transpositions lift to elements of order 2 and the product of two disjoint transpositions to elements of order 4. Given an elliptic curve E, let E[2] denote its 2-torsion points. Under some conditions on E elements in H1(GalQ, E[2])\{0} correspond to Galois extensions N of Q with Galois group (isomorphic to) S4. In this work we give an interpretation of the addition law on such fields, and prove that the obstruction for N having a Galois extension N˜ with Gal(N/˜ Q) 2+S4 gives a homomorphism s+ 4 : H1(GalQ, E[2]) → H2(GalQ, Z/2Z). As a corollary we can prove (if E has conductor divisible by few primes and high rank) the existence of 2-dimensional representations of the absolute Galois group of Q attached to E and use them in some examples to construct 3/2 modular forms mapping via the Shimura map to (the modular form of weight 2 attached to) E.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Mathematical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Galois representations
dc.subject
Shimura correspondence
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On the embedding problem for 2+s4 representations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-09-24T14:26:59Z
dc.journal.volume
74
dc.journal.number
260
dc.journal.pagination
2063-2075
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Mathematics of Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/S0025-5718-07-01940-0
Archivos asociados