Artículo
Deep learning-based classification using Cumulants and Bispectrum of EMG signals
Orosco, Eugenio Conrado
; Gaia Amorós, Jeremías
; Gimenez Romero, Javier Alejandro
; Soria, Carlos Miguel
Fecha de publicación:
12/2019
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
IEEE Latin America Transactions
ISSN:
1548-0992
Idioma:
Español
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Surface electromyographic signals (EMG) historically have been used to classify tasks in basis of a feature extraction scheme and low complexity classifiers. Deep networks, as Multilayer Perceptron and Convolutional Neural Network (MLP and CNN, respectively), avoid the traditional, complex and heuristic (handcrafted) process of feature extraction. Today, it is possible to face the computational cost that these automatic techniques require due to the technology advancement. This allowed deep learning techniques to be quickly generalized to countless applications. This paper proposes to use the third order cumulants and their 2D Fourier transform (Bispectrum) to directly feed CNN and MLP deep learning networks. The classifier is not user-dependent (same classifier for all users) and obtains better results than the classical scheme according to several metrics.
Palabras clave:
BISPECTRUM
,
CNN
,
CUMULANTS
,
EMG
,
MLP
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Articulos de INSTITUTO DE AUTOMATICA
Citación
Orosco, Eugenio Conrado; Gaia Amorós, Jeremías; Gimenez Romero, Javier Alejandro; Soria, Carlos Miguel; Deep learning-based classification using Cumulants and Bispectrum of EMG signals; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 17; 12; 12-2019; 1946-1953
Compartir
Altmétricas