Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning

Morales Garcia, John ArmandoIcon ; Orduña, Eduardo Agustín; Rehtanz, C.
Fecha de publicación: 06/2014
Editorial: Elsevier
Revista: International Journal of Electrical Power & Energy Systems
ISSN: 0142-0615
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

One of most important elements of Electric Power Systems (EPS) is the transmission line (TL), which is permanently under adverse conditions especially lightning strokes. At the moment, those phenomena have been the root cause of short circuits and the most important cause of mal-operation of transmission line protection relays. Thus, this paper develops the classification of lightning transient signals with and without fault. Multi-resolution analysis (MRA) is used to analyze those signals considering five mother wavelets and different decomposition levels of three phase voltages. In this manner, Spectral Energy and Machine Learning as Artificial Neural Network, K-Nearest Neighbors and Support Vector Machine are employed to classify those signals. On the other hand, the developed work in this paper analyzes most important parameters of lightning strokes, which are essentials in producing conditions with and without fault. Results show that the methodology presents an acceptable performance. © 2013 Elsevier Ltd. All rights reserved.
Palabras clave: BACK-FLASHOVER , DECOMPOSITION LEVEL , FLASHOVER , LIGHTNING STROKE , MACHINE LEARNING , MULTI-RESOLUTION ANALYSIS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.402Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/124808
DOI: http://dx.doi.org/10.1016/j.ijepes.2013.12.017
URL: https://www.sciencedirect.com/science/article/abs/pii/S0142061513005425
Colecciones
Articulos(IEE)
Articulos de INSTITUTO DE ENERGIA ELECTRICA
Citación
Morales Garcia, John Armando; Orduña, Eduardo Agustín; Rehtanz, C.; Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning; Elsevier; International Journal of Electrical Power & Energy Systems; 58; 6-2014; 19-31
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES