Mostrar el registro sencillo del ítem
dc.contributor.author
Dematties, Dario Jesus
dc.contributor.author
Rizzi, Silvio
dc.contributor.author
Thiruvathukal, George
dc.contributor.author
Wainselboim, Alejandro Javier
dc.contributor.author
Zanutto, Bonifacio Silvano
dc.date.available
2021-02-04T01:11:27Z
dc.date.issued
2019-06
dc.identifier.citation
Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George; Wainselboim, Alejandro Javier; Zanutto, Bonifacio Silvano; Phonetic acquisition in cortical dynamics, a computational approach; Public Library of Science; Plos One; 14; 6; 6-2019; 1-28
dc.identifier.issn
1932-6203
dc.identifier.uri
http://hdl.handle.net/11336/124688
dc.description.abstract
Many computational theories have been developed to improve artificial phonetic classificationperformance from linguistic auditory streams. However, less attention has been given topsycholinguistic data and neurophysiological features recently found in cortical tissue. Wefocus on a context in which basic linguistic units?such as phonemes?are extracted androbustly classified by humans and other animals from complex acoustic streams in speechdata. We are especially motivated by the fact that 8-month-old human infants can accomplishsegmentation of words from fluent audio streams based exclusively on the statisticalrelationships between neighboring speech sounds without any kind of supervision. In thispaper, we introduce a biologically inspired and fully unsupervised neurocomputationalapproach that incorporates key neurophysiological and anatomical cortical properties,including columnar organization, spontaneous micro-columnar formation, adaptation to contextualactivations and Sparse Distributed Representations (SDRs) produced by means ofpartial N-Methyl-D-aspartic acid (NMDA) depolarization. Its feature abstraction capabilitiesshow promising phonetic invariance and generalization attributes. Our model improves theperformance of a Support Vector Machine (SVM) classifier for monosyllabic, disyllabic andtrisyllabic word classification tasks in the presence of environmental disturbances such aswhite noise, reverberation, and pitch and voice variations. Furthermore, our approachemphasizes potential self-organizing cortical principles achieving improvement without anykind of optimization guidance which could minimize hypothetical loss functions by meansof?for example?backpropagation. Thus, our computational model outperforms multiresolutionspectro-temporal auditory feature representations using only the statistical sequentialstructure immerse in the phonotactic rules of the input stream.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Public Library of Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Phonetic acquisition
dc.subject
Cortical dynamics
dc.subject
Neurobiological plausibility
dc.subject
Neural networks
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Phonetic acquisition in cortical dynamics, a computational approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-25T16:45:24Z
dc.journal.volume
14
dc.journal.number
6
dc.journal.pagination
1-28
dc.journal.pais
Estados Unidos
dc.journal.ciudad
San Francisco
dc.description.fil
Fil: Dematties, Dario Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina
dc.description.fil
Fil: Rizzi, Silvio. Argonne National Laboratory; Estados Unidos
dc.description.fil
Fil: Thiruvathukal, George. Loyola University; Estados Unidos
dc.description.fil
Fil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
dc.description.fil
Fil: Zanutto, Bonifacio Silvano. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
dc.journal.title
Plos One
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1371/journal.pone.0217966
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217966
Archivos asociados