Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Phonetic acquisition in cortical dynamics, a computational approach

Dematties, Dario JesusIcon ; Rizzi, Silvio; Thiruvathukal, George; Wainselboim, Alejandro JavierIcon ; Zanutto, Bonifacio SilvanoIcon
Fecha de publicación: 06/2019
Editorial: Public Library of Science
Revista: Plos One
ISSN: 1932-6203
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Many computational theories have been developed to improve artificial phonetic classificationperformance from linguistic auditory streams. However, less attention has been given topsycholinguistic data and neurophysiological features recently found in cortical tissue. Wefocus on a context in which basic linguistic units?such as phonemes?are extracted androbustly classified by humans and other animals from complex acoustic streams in speechdata. We are especially motivated by the fact that 8-month-old human infants can accomplishsegmentation of words from fluent audio streams based exclusively on the statisticalrelationships between neighboring speech sounds without any kind of supervision. In thispaper, we introduce a biologically inspired and fully unsupervised neurocomputationalapproach that incorporates key neurophysiological and anatomical cortical properties,including columnar organization, spontaneous micro-columnar formation, adaptation to contextualactivations and Sparse Distributed Representations (SDRs) produced by means ofpartial N-Methyl-D-aspartic acid (NMDA) depolarization. Its feature abstraction capabilitiesshow promising phonetic invariance and generalization attributes. Our model improves theperformance of a Support Vector Machine (SVM) classifier for monosyllabic, disyllabic andtrisyllabic word classification tasks in the presence of environmental disturbances such aswhite noise, reverberation, and pitch and voice variations. Furthermore, our approachemphasizes potential self-organizing cortical principles achieving improvement without anykind of optimization guidance which could minimize hypothetical loss functions by meansof?for example?backpropagation. Thus, our computational model outperforms multiresolutionspectro-temporal auditory feature representations using only the statistical sequentialstructure immerse in the phonotactic rules of the input stream.
Palabras clave: Phonetic acquisition , Cortical dynamics , Neurobiological plausibility , Neural networks
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.943Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/124688
DOI: https://doi.org/10.1371/journal.pone.0217966
URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217966
Colecciones
Articulos(INCIHUSA)
Articulos de INST. DE CS. HUMANAS, SOC. Y AMBIENTALES
Citación
Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George; Wainselboim, Alejandro Javier; Zanutto, Bonifacio Silvano; Phonetic acquisition in cortical dynamics, a computational approach; Public Library of Science; Plos One; 14; 6; 6-2019; 1-28
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES