Mostrar el registro sencillo del ítem
dc.contributor.author
Ferrer, Luciana
dc.contributor.author
McLaren, Mitchell
dc.date.available
2021-01-21T15:59:16Z
dc.date.issued
2019-01
dc.identifier.citation
Ferrer, Luciana; McLaren, Mitchell ; Joint PLDA for Simultaneous Modeling of Two Factors; Microtome; Journal of Machine Learning Research; 1-2019; 1-29
dc.identifier.issn
1533-7928
dc.identifier.uri
http://hdl.handle.net/11336/123319
dc.description.abstract
Probabilistic linear discriminant analysis (PLDA) is a method used for biometric problems like speaker or face recognition that models the variability of the samples using two latent variables, one that depends on the class of the sample and another one that is assumed independent across samples and models the within-class variability. In this work, we propose a generalization of PLDA that enables joint modeling of two sample-dependent factors: the class of interest and a nuisance condition. The approach does not change the basic form of PLDA but rather modifies the training procedure to consider the dependency across samples of the latent variable that models within-class variability. While the identity of the nuisance condition is needed during training, it is not needed during testing since we propose a scoring procedure that marginalizes over the corresponding latent variable. We show results on a multilingual speaker-verification task, where the language spoken is considered a nuisance condition. The proposed joint PLDA approach leads to significant performance gains in this task for two different data sets, in particular when the training data contains mostly or only monolingual speakers.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Microtome
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS
dc.subject
SPEAKER RECOGNITION
dc.subject
FACTOR ANALYSIS
dc.subject
LANGUAGE VARIABILITY
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Joint PLDA for Simultaneous Modeling of Two Factors
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-07-08T18:56:40Z
dc.journal.pagination
1-29
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: McLaren, Mitchell. No especifíca;
dc.journal.title
Journal of Machine Learning Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://jmlr.org/papers/v20/18-134.html
Archivos asociados