Artículo
Bayesian network semantics for Petri nets
Fecha de publicación:
02/2020
Editorial:
Elsevier Science
Revista:
Theoretical Computer Science
ISSN:
0304-3975
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Recent work by the authors equips Petri occurrence nets (PN) with probability distributions which fully replace nondeterminism. To avoid the so-called confusion problem, the construction imposes additional causal dependencies which restrict choices within certain subnets called structural branching cells (s-cells). Bayesian nets (BN) are usually structured as partial orders where nodes define conditional probability distributions. In the paper, we unify the two structures in terms of Symmetric Monoidal Categories (SMC), so that we can apply to PN ordinary analysis techniques developed for BN. Interestingly, it turns out that PN which cannot be SMC-decomposed are exactly s-cells. This result confirms the importance for Petri nets of both SMC and s-cells.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Bruni, Roberto; Melgratti, Hernan Claudio; Montanari, Ugo; Bayesian network semantics for Petri nets; Elsevier Science; Theoretical Computer Science; 807; 2-2020; 95-113
Compartir
Altmétricas