Mostrar el registro sencillo del ítem

dc.contributor.author
Gelman Constantin, Julián  
dc.contributor.author
Ruiz, Lucas Ernesto  
dc.contributor.author
Villarosa, Gustavo  
dc.contributor.author
Outes, Ana Valeria  
dc.contributor.author
Bajano, Facundo N.  
dc.contributor.author
He, Cenlin  
dc.contributor.author
Bajano, Héctor  
dc.contributor.author
Dawidowski, Laura Elena  
dc.date.available
2020-12-29T21:49:52Z  
dc.date.issued
2020-12  
dc.identifier.citation
Gelman Constantin, Julián; Ruiz, Lucas Ernesto; Villarosa, Gustavo; Outes, Ana Valeria; Bajano, Facundo N.; et al.; Measurements and modeling of snow albedo at Alerce Glacier, Argentina: effects of volcanic ash, snow grain size and cloudiness; Copernicus Publications; The Cryoshere; 14; 12-2020; 4581–4601  
dc.identifier.issn
1994-0416  
dc.identifier.uri
http://hdl.handle.net/11336/121340  
dc.description.abstract
The relevance of light absorbing impurities in snow albedo (and its effects in seasonal snow or glacier mass balance) have been under study for several decades. However, the effect of volcanic ash has been much less studied, and most articles studied only the effect of thick layers after direct deposition. There is also a knowledge gap in field measurements of seasonal snow and glaciers of the southern Andes, that only recently has started to be filled.We present here the first field measurements on Argentinian Andes, combined with albedo and mass balance modeling activities.Measured impurities content (1.1mgkg−1 to 30000 mgkg−1) varied abruptly in snow pits and snow/firn cores, due to high surface enrichment during ablation season and possibly local/regional wind driven resuspension and redeposition of dust and volcanic ash. In addition, we observed a high spatial hetereogeneity, due to seasonality, glacier topography and prevailing wind direction. Microscopical characterization showed that the major component was ash from recent Calbuco (2015) and Cordón Caulle (2011) volcanic eruption, with 10 minor presence of mineral dust and Black Carbon. We also found a wide range of measured snow albedo (0.26 to 0.81), whichreflected mainly the impurities content and the snow/firn grain size (due to aging). SNICAR model has been updated to model snow albedo taking into account the effect of cloudiness on incident radiation spectra, improving the match of modeled and measured values. We also ran sensitivity studies on the main measured parameters (impurities content and composition, snow grain size, layer thickness, etc) to assess which field measurements precision can improve the uncertainty of albedo modeling. Finally, we studied the impact of these albedo reductions in Alerce glacier using a spatially distributed surface mass-balance model. We found a large impact of albedo changes in glacier mass balance, and we estimated that the effect of observed ash concentrations can be as high as a 1.25mwe decrease in the glacier-wide annual mass balance (due to a 34 % of increase inthe melt during the ablation season).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Copernicus Publications  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
ALERCE GLACIER  
dc.subject
SNOW ALBEDO  
dc.subject
VOLCANIC ASH  
dc.subject
BLACK CARBON  
dc.subject
SNICAR MODEL  
dc.subject.classification
Geociencias multidisciplinaria  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Measurements and modeling of snow albedo at Alerce Glacier, Argentina: effects of volcanic ash, snow grain size and cloudiness  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-04T19:54:35Z  
dc.identifier.eissn
1994-0424  
dc.journal.volume
14  
dc.journal.pagination
4581–4601  
dc.journal.pais
Alemania  
dc.journal.ciudad
Gotinga  
dc.description.fil
Fil: Gelman Constantin, Julián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Seguridad Nuclear y Ambiente. Gerencia de Química (CAC); Argentina  
dc.description.fil
Fil: Ruiz, Lucas Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina  
dc.description.fil
Fil: Villarosa, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; Argentina  
dc.description.fil
Fil: Outes, Ana Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; Argentina  
dc.description.fil
Fil: Bajano, Facundo N.. Comisión Nacional de Energía Atómica. Gerencia del Área de Seguridad Nuclear y Ambiente. Gerencia de Química (CAC); Argentina  
dc.description.fil
Fil: He, Cenlin. National Center for Atmospheric Research; Estados Unidos  
dc.description.fil
Fil: Bajano, Héctor. Comisión Nacional de Energía Atómica. Gerencia del Área de Seguridad Nuclear y Ambiente. Gerencia de Química (CAC); Argentina  
dc.description.fil
Fil: Dawidowski, Laura Elena. Comisión Nacional de Energía Atómica. Gerencia del Área de Seguridad Nuclear y Ambiente. Gerencia de Química (CAC); Argentina  
dc.journal.title
The Cryoshere  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.5194/tc-2020-95  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://tc.copernicus.org/articles/14/4581/2020/