Show simple item record

dc.contributor.author Caceres, Jorge
dc.contributor.author Moncayo, Samuel
dc.contributor.author Rosales, Juan D.
dc.contributor.author de Villena, Francisco Javier Manuel
dc.contributor.author Alvira, Fernando Carlos
dc.contributor.author Bilmes, Gabriel M.
dc.date.available 2017-01-26T20:29:45Z
dc.date.issued 2013-09
dc.identifier.citation Caceres, Jorge; Moncayo, Samuel; Rosales, Juan D.; de Villena, Francisco Javier Manuel; Alvira, Fernando Carlos; et al.; Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis; Soc Applied Spectroscopy; Applied Spectroscopy; 67; 9; 9-2013; 1064-1072
dc.identifier.issn 0003-7028
dc.identifier.uri http://hdl.handle.net/11336/12031
dc.description.abstract The adulteration and traceability of olive oils are serious problems in the olive oil industry. In this work, a method based on laser-induced breakdown spectroscopy (LIBS) and neural networks (NNs) has been developed and applied to the identification, quality control, traceability, and adulteration detection of extra virgin olive oils. Instant identification of the samples is achieved using a spectral library, which was obtained by analysis of representative samples using a single laser pulse and treatment by NNs. The samples used in this study belong to four countries. The study also included different regions of each country. The results obtained allow the identification of the oils tested with a certainty of more than 95%. Single-shot measurements were enough for clear identification of the samples. The method can be developed for automatic real-time, fast, reliable, and robust measurements, and the system can be packed into portable form for non-specialist users.
dc.format application/pdf
dc.language.iso eng
dc.publisher Soc Applied Spectroscopy
dc.rights info:eu-repo/semantics/restrictedAccess
dc.rights.uri https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject Laser-induced breakdown spectroscopy
dc.subject LIBS
dc.subject Neural networks
dc.subject Olive oils
dc.subject Edible oils
dc.subject.classification Óptica
dc.subject.classification Ciencias Físicas
dc.subject.classification CIENCIAS NATURALES Y EXACTAS
dc.title Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to olive oils analysis
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion
dc.date.updated 2017-01-24T14:42:24Z
dc.journal.volume 67
dc.journal.number 9
dc.journal.pagination 1064-1072
dc.journal.pais Estados Unidos
dc.journal.ciudad Maryland
dc.description.fil Fil: Caceres, Jorge. Universidad Complutense de Madrid; España
dc.description.fil Fil: Moncayo, Samuel. Universidad Complutense de Madrid; España
dc.description.fil Fil: Rosales, Juan D.. Universidad Complutense de Madrid; España
dc.description.fil Fil: de Villena, Francisco Javier Manuel. Universidad Complutense de Madrid; España
dc.description.fil Fil: Alvira, Fernando Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
dc.description.fil Fil: Bilmes, Gabriel M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina
dc.journal.title Applied Spectroscopy
dc.relation.alternativeid info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1366/12-06916
dc.relation.alternativeid info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/abs/10.1366/12-06916


Archivos asociados

Icon
Blocked Acceso no disponible

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)