Artículo
Seeking relevant information from a statistical model
Fecha de publicación:
11/2016
Editorial:
EDP Sciences
Revista:
Probability and Statistics
ISSN:
1292-8100
e-ISSN:
1262-3318
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We herein introduce a general variable selection procedure, which can be applied to several parametric multivariate problems, including principal components and regression, among others. The aim is to allow the identification of a small subset of the original variables that can ‘better explain’ the model through nonparametric relationships. The method typically yields some noisy uninformative variables and some variables that are strongly related because of their general dependence and our aim is to help understand the underlying structures in a given data–set. The asymptotic behaviour of the proposed method is considered and some real and simulated data–sets are analysed as examples.
Palabras clave:
PRINCIPAL COMPONENTS ANALYSIS
,
REGRESSION
,
VARIABLE SELECTION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Fraiman, Jacob Ricardo; Gimenez, Yanina; Svarc, Marcela; Seeking relevant information from a statistical model; EDP Sciences; Probability and Statistics; 20; 11-2016; 463-479
Compartir
Altmétricas