Mostrar el registro sencillo del ítem

dc.contributor.author
Lakkis, Susan Gabriela  
dc.contributor.author
Canziani, Pablo Osvaldo  
dc.contributor.author
Yuchechen, Adrian Enrique  
dc.contributor.author
Rocamora, Leandro Tomás  
dc.contributor.author
Caferri, Agustin  
dc.contributor.author
Hodges, Kevin  
dc.contributor.author
Ó Neill, Alan  
dc.date.available
2020-10-30T13:44:43Z  
dc.date.issued
2019-01  
dc.identifier.citation
Lakkis, Susan Gabriela; Canziani, Pablo Osvaldo; Yuchechen, Adrian Enrique; Rocamora, Leandro Tomás; Caferri, Agustin; et al.; A 4D Feature Tracking Algorithm: a multidimensional view of cyclone systems; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 145; 719; 1-2019; 395-417  
dc.identifier.issn
0035-9009  
dc.identifier.uri
http://hdl.handle.net/11336/117222  
dc.description.abstract
An objective four-dimensional (4D) algorithm developed to track extratropical relative vorticity anomaly 3D structure over time is introduced and validated. The STACKER algorithm, structured with the TRACKER single-level tracking algorithm as source of the single-level raw tracks, objectively combines tracks from various levels to determine the 3D structure of the cyclone (or anticyclone) events throughout their life cycle. STACKER works progressively, beginning with two initial levels and then adding additional levels to the stack in a bottom-up and/or top-down approach. This allows an iterative stacking approach, adding one level at a time, resulting in an optimized 4D determination of relative vorticity anomaly events. A two-stage validation process is carried out with the ECMWF reanalysis ERA-Interim dataset for the 2015 austral winter. First the overall tracking capability during an austral winter, taking into account a set of climate indicators and their impacts on Southern Hemisphere circulation, was compared to previous climatologies, in order to verify the density and distribution of the cyclone events detected by STACKER. Results show the cyclone density distribution is in very good agreement with previous climatologies, after taking into account potential differences due to climate variability and different tracking methodologies. The second stage focuses on three different long-lived events over the Southern Hemisphere during the winter of 2015, spanning seven different pressure levels. Both GOES satellite imagery, infrared and water vapour channels, and ERA-Interim cloud cover products are used in order to validate the tracks obtained as well as the algorithm's capability and reliability. The observed 3D cyclone structures and their time evolution are consistent with current understanding of cyclone system development. Thus, the two-stage validation confirms that the algorithm is suitable to track multilevel events, and can follow and analyse their 3D life cycle and develop full 3D climatologies and climate variability studies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CYCLONES  
dc.subject
DYNAMIC PROGRAMMING  
dc.subject
FEATURE TRACKING  
dc.subject
MULTILEVEL STRUCTURES  
dc.subject
OPTIMAL ALGORITHM  
dc.subject
RELATIVE VORTICITY  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A 4D Feature Tracking Algorithm: a multidimensional view of cyclone systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-10-29T20:05:35Z  
dc.journal.volume
145  
dc.journal.number
719  
dc.journal.pagination
395-417  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Ciencias Agrarias; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina  
dc.description.fil
Fil: Canziani, Pablo Osvaldo. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Yuchechen, Adrian Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina  
dc.description.fil
Fil: Rocamora, Leandro Tomás. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina  
dc.description.fil
Fil: Caferri, Agustin. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Hodges, Kevin. University of Reading; Reino Unido  
dc.description.fil
Fil: Ó Neill, Alan. University of Reading; Reino Unido  
dc.journal.title
Quarterly Journal of the Royal Meteorological Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/qj.3436  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3436