Mostrar el registro sencillo del ítem
dc.contributor.author
Llanos, Claudia Elizabeth
dc.contributor.author
Sanchez, Mabel Cristina
dc.contributor.author
Maronna, Ricardo Antonio
dc.date.available
2020-10-15T15:25:47Z
dc.date.issued
2019-05-31
dc.identifier.citation
Llanos, Claudia Elizabeth; Sanchez, Mabel Cristina; Maronna, Ricardo Antonio; Dynamic system state estimation and outlier detection using Robust data reconciliation; Italian Association of Chemical Engineering; Chemical Engineering Transactions; 74; 31-5-2019; 721-726
dc.identifier.issn
2283-9216
dc.identifier.uri
http://hdl.handle.net/11336/115977
dc.description.abstract
State estimation and detection of measurement systematic errors are critical components of plant monitoring and control procedures. Reliable estimations of the process variables are attained by Classic Dynamic Data Reconciliation procedures when measurements follow exactly a known distribution. However, if this assumption happens approximately due to the presence of systematic errors, as outliers, classic dynamic data reconciliation provides biased results. In this work, a two-step methodology of Robust Dynamic Data Reconciliation and Systematic Error Detection is proposed. It takes advantages of a moving measurement window of fixed dimension and the features of the M-estimators. Furthermore, the presence of outliers is detected using a Robust Measurement Test. Two case studies are proposed, which work with the Huber and Biweigth M-estimators. A nonlinear benchmark extracted from the literature is considered, and performance measures are reported. The results obtained demonstrate the effectiveness of the proposed methodology.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Italian Association of Chemical Engineering
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ATYU
dc.subject
ATUI
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Dynamic system state estimation and outlier detection using Robust data reconciliation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-24T16:05:28Z
dc.journal.volume
74
dc.journal.pagination
721-726
dc.journal.pais
Italia
dc.journal.ciudad
Milán
dc.description.fil
Fil: Llanos, Claudia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
dc.journal.title
Chemical Engineering Transactions
dc.relation.isreferencedin
info:eu-repo/semantics/reference/url/https://www.cetjournal.it/index.php/cet/article/view/CET1974121
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3303/CET1974121
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cetjournal.it/index.php/cet/article/view/CET1974121
Archivos asociados