Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Video summarisation by deep visual and categorical diversity

Atencio, Pedro; Sanchez Torres, German; Branch, John; Delrieux, Claudio AugustoIcon
Fecha de publicación: 13/05/2019
Editorial: Institution of Engineering and Technology
Revista: Iet Computer Vision
ISSN: 1751-9632
e-ISSN: 1751-9640
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

The authors propose a video-summarisation method based on visual and categorical diversities using pre-trained deep visual and categorical models. Their method extracts visual and categorical features from a pre-trained deep convolutional network (DCN) and a pre-trained word-embedding matrix. Using visual and categorical information they obtain a video diversity estimation, which is used as an importance score to select segments from the input video that best describes it. Their method also allows performing queries during the search process, in this way personalising the resulting video summaries according to the particular intended purposes. The performance of the method is evaluated using different pre-trained DCN models in order to select the architecture with the best throughput. They then compare it with other state-of-the-art proposals in video summarisation using a data-driven approach with the public dataset SumMe, which contains annotated videos with per-fragment importance. The results show that their method outperforms other proposals in most of the examples. As an additional advantage, their method requires a simple and direct implementation that does not require a training stage.
Palabras clave: VIDEO SUMMARIZATION METHOD , TRANSFER LEARNING , DCN
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.068Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/107468
URL: https://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2018.5436
DOI: http://dx.doi.org/ 10.1049/iet-cvi.2018.5436
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Atencio, Pedro; Sanchez Torres, German; Branch, John; Delrieux, Claudio Augusto; Video summarisation by deep visual and categorical diversity; Institution of Engineering and Technology; Iet Computer Vision; 13; 6; 13-5-2019; 569-577
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES