Mostrar el registro sencillo del ítem

dc.contributor.author
Worrall, Stewart  
dc.contributor.author
Orchansky, David  
dc.contributor.author
Masson, Favio Roman  
dc.contributor.author
Nieto, Juan  
dc.contributor.author
Nebot, Eduardo  
dc.date.available
2020-05-20T14:33:16Z  
dc.date.issued
2010-05  
dc.identifier.citation
Worrall, Stewart; Orchansky, David; Masson, Favio Roman; Nieto, Juan; Nebot, Eduardo; Determining high safety risk scenarios by applying context information; University of Alicante; Journal of Physical Agents (JoPha); 4; 2; 5-2010; 27-34  
dc.identifier.issn
1888-0258  
dc.identifier.uri
http://hdl.handle.net/11336/105549  
dc.description.abstract
When mining vehicle operators take risks, there is a increased probability of an accident that can cause injuries, fatalities and large financial costs to the mine operators. It can be assumed that the operators do not intentially take unnecessarily high risk, and that the risks are hidden due to factors such as adverse weather, fatigue, visual obstructions, boredom, etc. This paper examines the potential of measuring the risk of danger in a multi-agent situation by using the safe rules of operation defined by mining safety management. The problem with measuring safety is that the safe rules of operation are heavily dependent on the context of the situation. What is considered normal practice and safe in one part of the mine (such as performing a u-turn in a parking lot) is not safe on a haul road. To be able to measure safety, it is therefore necessary to understand the different context areas in a mine so that feedback of unsafe behaviour presented to the operator is relevant to the context of the situation. This paper presents a novel method for generating context area information using the vehicle trajectory information collected from a group of vehicles interacting in an area. Results are presented using real-life data collected from several operating fleets of mining vehicles. The algorithms presented have potential application to a large variety of environments including Intelligent Transportation Systems (ITS).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
University of Alicante  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
VEHICLE SAFETY  
dc.subject
COLLISION AVOIDANCE  
dc.subject
CONTEXT  
dc.subject
DATA MINING  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Determining high safety risk scenarios by applying context information  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-05-04T13:38:11Z  
dc.identifier.eissn
2340-3853  
dc.journal.volume
4  
dc.journal.number
2  
dc.journal.pagination
27-34  
dc.journal.pais
España  
dc.journal.ciudad
Alicante  
dc.description.fil
Fil: Worrall, Stewart. University of Sydney; Australia  
dc.description.fil
Fil: Orchansky, David. University of Sydney; Australia  
dc.description.fil
Fil: Masson, Favio Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur; Argentina  
dc.description.fil
Fil: Nieto, Juan. University of Sydney; Australia  
dc.description.fil
Fil: Nebot, Eduardo. University of Sydney; Australia  
dc.journal.title
Journal of Physical Agents (JoPha)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.jopha.ua.es/article/view/2010-v4-n2-determining-high-safety-risk-scenarios-by-applying-context-information  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://rua.ua.es/dspace/bitstream/10045/14175/1/JoPha_4_2_04.pdf  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.14198/JoPha.2010.4.2.04