Mostrar el registro sencillo del ítem
dc.contributor.author
Worrall, Stewart
dc.contributor.author
Orchansky, David
dc.contributor.author
Masson, Favio Roman
dc.contributor.author
Nieto, Juan
dc.contributor.author
Nebot, Eduardo
dc.date.available
2020-05-20T14:33:16Z
dc.date.issued
2010-05
dc.identifier.citation
Worrall, Stewart; Orchansky, David; Masson, Favio Roman; Nieto, Juan; Nebot, Eduardo; Determining high safety risk scenarios by applying context information; University of Alicante; Journal of Physical Agents (JoPha); 4; 2; 5-2010; 27-34
dc.identifier.issn
1888-0258
dc.identifier.uri
http://hdl.handle.net/11336/105549
dc.description.abstract
When mining vehicle operators take risks, there is a increased probability of an accident that can cause injuries, fatalities and large financial costs to the mine operators. It can be assumed that the operators do not intentially take unnecessarily high risk, and that the risks are hidden due to factors such as adverse weather, fatigue, visual obstructions, boredom, etc. This paper examines the potential of measuring the risk of danger in a multi-agent situation by using the safe rules of operation defined by mining safety management. The problem with measuring safety is that the safe rules of operation are heavily dependent on the context of the situation. What is considered normal practice and safe in one part of the mine (such as performing a u-turn in a parking lot) is not safe on a haul road. To be able to measure safety, it is therefore necessary to understand the different context areas in a mine so that feedback of unsafe behaviour presented to the operator is relevant to the context of the situation. This paper presents a novel method for generating context area information using the vehicle trajectory information collected from a group of vehicles interacting in an area. Results are presented using real-life data collected from several operating fleets of mining vehicles. The algorithms presented have potential application to a large variety of environments including Intelligent Transportation Systems (ITS).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
University of Alicante
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
VEHICLE SAFETY
dc.subject
COLLISION AVOIDANCE
dc.subject
CONTEXT
dc.subject
DATA MINING
dc.subject.classification
Control Automático y Robótica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Determining high safety risk scenarios by applying context information
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-05-04T13:38:11Z
dc.identifier.eissn
2340-3853
dc.journal.volume
4
dc.journal.number
2
dc.journal.pagination
27-34
dc.journal.pais
España
dc.journal.ciudad
Alicante
dc.description.fil
Fil: Worrall, Stewart. University of Sydney; Australia
dc.description.fil
Fil: Orchansky, David. University of Sydney; Australia
dc.description.fil
Fil: Masson, Favio Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur; Argentina
dc.description.fil
Fil: Nieto, Juan. University of Sydney; Australia
dc.description.fil
Fil: Nebot, Eduardo. University of Sydney; Australia
dc.journal.title
Journal of Physical Agents (JoPha)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.jopha.ua.es/article/view/2010-v4-n2-determining-high-safety-risk-scenarios-by-applying-context-information
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://rua.ua.es/dspace/bitstream/10045/14175/1/JoPha_4_2_04.pdf
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.14198/JoPha.2010.4.2.04
Archivos asociados