Mostrar el registro sencillo del ítem

dc.contributor.author
Meents, A.  
dc.contributor.author
Owen, R. L.  
dc.contributor.author
Murgida, Daniel Horacio  
dc.contributor.author
Hildebrandt, P.  
dc.contributor.author
Schneider, R.  
dc.contributor.author
Pradervand, C.  
dc.contributor.author
Bohler, P.  
dc.contributor.author
Schulze Briese, C.  
dc.date.available
2020-04-22T20:34:30Z  
dc.date.issued
2007-12  
dc.identifier.citation
Meents, A.; Owen, R. L.; Murgida, Daniel Horacio; Hildebrandt, P.; Schneider, R.; et al.; Resonance Raman Spectroscopy For In-Situ Monitoring Of Radiation Damage; American Institute of Physics; AIP Conference Proceedings; 879; 12-2007; 1984-1988  
dc.identifier.issn
0094-243X  
dc.identifier.uri
http://hdl.handle.net/11336/103362  
dc.description.abstract
Radiation induced damage of metal centres in proteins is a severe problem in X-ray structure determination. Photoreduction can lead to erroneous structural implications, and in the worst cases cause structure solution to fail. Resonance Raman (RR) spectroscopy is well suited in-situ monitoring of X-ray induced photoreduction. However the laser excitation needed for RR can itself cause photoreduction of the metal centres. In the present study myoglobin and rubredoxin crystals were used as model systems to assess the feasibility of using RR for this application. It is shown that at least 10-15 RR spectra per crystal can be recorded at low laser power before severe photoreduction occurs.Furthermore it is possible to collect good quality RR spectra from cryocooled protein crystals with exposure times of only a few seconds. Following extended laser illumination photoreduction is observed through the formation and decay of spectral bands as a function of dose. The experimental setup planned for integration into the SLS protein crystallography beamlines is also described. This setup should also prove to be very useful for other experimental techniques at synchrotrons where X-ray photoreduction is a problem e.g. X-ray absorption spectroscopy.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Raman microscopy  
dc.subject
Radiation damage  
dc.subject
Synchrotron radiation  
dc.subject
In situ monitoring  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Resonance Raman Spectroscopy For In-Situ Monitoring Of Radiation Damage  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-22T15:40:46Z  
dc.journal.volume
879  
dc.journal.pagination
1984-1988  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Meents, A.. Swiss Light Source; Suiza  
dc.description.fil
Fil: Owen, R. L.. Swiss Light Source; Suiza  
dc.description.fil
Fil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Hildebrandt, P.. Swiss Light Source; Suiza  
dc.description.fil
Fil: Schneider, R.. Swiss Light Source; Suiza  
dc.description.fil
Fil: Pradervand, C.. Swiss Light Source; Suiza  
dc.description.fil
Fil: Bohler, P.. Swiss Light Source; Suiza  
dc.description.fil
Fil: Schulze Briese, C.. Swiss Light Source; Suiza  
dc.journal.title
AIP Conference Proceedings  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/abs/10.1063/1.2436464  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.2436464