Mostrar el registro sencillo del ítem

dc.contributor.author
Richaud, Maria Cristina  
dc.date.available
2020-04-01T19:52:58Z  
dc.date.issued
2005-12  
dc.identifier.citation
Richaud, Maria Cristina; Desarrollos del análisis factorial para el estudio de ítems dicotómicos y ordinales; Centro Interamericano de Investigaciones Psicológicas y Ciencias Afines; Interdisciplinaria; 22; 2; 12-2005; 237-251  
dc.identifier.issn
0325-8203  
dc.identifier.uri
http://hdl.handle.net/11336/101574  
dc.description.abstract
Los ítem de evaluación cualitativa (dicotómicos u ordinales) presentan problemas específicos para la utilización del análisis factorial en las pruebas de personalidad. En el presente trabajo se revisan algunos desarrollos recientes en análisis factorial que resultan apropiados para este tipo de ítem. Estos desarrollos se han realizado en el contexto de dos modelos estadísticos: la Teoría de la Respuesta al Item y el modelo de las ecuaciones estructurales. También se verá la relevancia del escalamiento de ítem en el contexto de estos dos modelos. Se presentan algunos ejemplos de la utilidad de estos modelos para resolver cuestiones básicas, tales como la dimensionalidad de la escala y las propiedades generales de los ítem, la adecuación de las respuestas observadas y el funcionamiento diferencial del ítem a través de diferentes submuestras.  
dc.description.abstract
Factor analysis has been used in formulating conceptual models in personality and personality assessment, as well as in the process of construction of personality scales. Factor analysis assumes continuously measured interval level data. However, applications of the factor analysis model in the personality literature frequently are conducted using dichotomous or ordinal data obtained at the item level. It has been proposed several solutions for studying dichotomous or ordinal data. Christoffersson (1978) introduced a method for factor analyzing dichotomous data using tetrachoric correlations. Muthén (1984) extended this method to provide a less computationally heavy approach. Standard factor analysis implies two different levels of variables: unobserved factors, and observed indicators for those factors (items). The generalized least squares method to the factor analysis of dichotomous data requires one additional intermediate level between the observed data and the latent variable. Thus two levels of abstraction are involved in the analysis: observed dichotomous or ordered categorical items are linked to unobserved latent response variables via tetrachoric or polychoric correlations. These unobserved latent response variables then serve as the indicators for the factors. In this model the factors summarize the relations among latent variables rather than directly among observed variables. Another method for the factor analysis of dichotomous or ordered categorical items is that of maximum likelihood. As in the case of the generalized least squares method, the maximum likelihood approach use tetrachoric correlations among items, but approximates a numerical integration of a distribution of observations, assumed to be normal, using weighted sums. There exist also parallel analysis programs (Buja, & Eyuboglu, 1992; Horn, 1965) that produce data sets based in aleatory numbers normally distributed, generated by the computer (O'Connor, 2000). Another manner of analysis of relationships between unobserved factors and observed dichotomous or ordinal data is that of aplying Item Response Theory (IRT). In conjunction with exploratory item-level factor analises that adress the underlying dimensionality of the item set, IRT and confirmatory item-level factor analyses are useful for the construction and validation of personality inventories.  
dc.format
application/pdf  
dc.language.iso
spa  
dc.publisher
Centro Interamericano de Investigaciones Psicológicas y Ciencias Afines  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject.classification
Psicología especial  
dc.subject.classification
Psicología  
dc.subject.classification
CIENCIAS SOCIALES  
dc.title
Desarrollos del análisis factorial para el estudio de ítems dicotómicos y ordinales  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-13T20:10:20Z  
dc.journal.volume
22  
dc.journal.number
2  
dc.journal.pagination
237-251  
dc.journal.pais
Argentina  
dc.description.fil
Fil: Richaud, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; Argentina  
dc.journal.title
Interdisciplinaria