
 1

Running title: 

Enzyme changes in tomato fruit development 

 

 

Corresponding author: 

Marie-Caroline Steinhauser 

Max Planck Institute of Molecular Plant Physiology,  

Am Muehlenberg 1, 

Potsdam-Golm 14476, Germany 

 

Tel: (49)331 567 8118 

Fax: (49)331 567 8134 

Email: msteinhauser@mpimp-golm.mpg.de 

 

 

Research category:  

Biochemical Processes and Macromolecular Structures 

 Plant Physiology Preview. Published on March 24, 2010, as DOI:10.1104/pp.110.154336

 Copyright 2010 by the American Society of Plant Biologists



 2

Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and 

Solanum pennellii 

 

 

Marie-Caroline Steinhauser*
,1

, Dirk Steinhauser
1
, Karin Koehl

1
, Fernando Carrari

2
, Yves Gibon

1,3
, Alisdair 

R. Fernie
1
 and Mark Stitt

1
 

 

1
Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany 

2
Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Argentina 

3
Present address: INRA Bordeaux, University of Bordeaux 1&2, UMR619 Fruit Biology, F-33883 Villenave 

d'Ornon, France 

 

*Corresponding author 

 

Key Words 

Tomato, Solanum lycopersicum, Solanum pennellii, enzyme activities, fruit development  

 



 3

Financial source: This research was supported by the Max Planck Society and the EU SOL Integrated 

Project FOOD-CT-2006-016214. 

 

Present address: INRA Bordeaux, University of Bordeaux 1&2, UMR619 Fruit Biology, F-33883 Villenave 

d'Ornon, France (Y.G.) 

 

Corresponding author: Marie-Caroline Steinhauser, msteinhauser@mpimp-golm.mpg.de 



 4

Abstract 

 

Enzymes interact to generate metabolic networks. The activities of >22 enzymes from central 

metabolism were profiled during the development of fruit of the modern cultivar Solanum lycopersicum 

`M82´ and its wild relative Solanum pennellii (LA0716). In S. pennellii the mature fruit remains green and 

contains lower sugar and higher organic acid levels. These genotypes are the parents of a widely-used 

near introgression line population. Enzymes were also profiled in a second cultivar, S. lycopersicum 

`Moneymaker´, for which data sets for the developmental changes of metabolites and transcripts are 

available. Whereas most enzyme activities declined during fruit development in the modern S. 

lycopersicum cultivars, they remained high or even increased in S. pennellii, especially enzymes required 

for organic acid synthesis. The enzyme profiles were sufficiently characteristic to allow stages of 

development and cultivars and the wild species to be distinguished by principal component analysis and 

clustering. Many enzymes showed coordinated changes during fruit development of a given genotype. 

Comparison of the correlation matrices revealed a large overlap between the two modern cultivars, and 

considerable overlap with S. pennellii, indicating that despite the very different development responses, 

some basic modules are retained. Comparison of enzyme activity, metabolite and transcript profiles in S. 

lycopersicum `Moneymaker´ revealed remarkably little connectivity between the developmental changes 

of transcripts and enzymes, and even less between enzymes and metabolites. We discuss the concept 

that the metabolite profile is an emergent property, which is generated by complex network 

interactions. 
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Introduction 

The cultivated tomato, Solanum lycopersicum, is the second most important non-cereal crop worldwide 

and an important model species for fruit physiology and development, quantitative genetics and plant 

breeding (Tanksley et al., 1995; Giovannoni, 2001; Zamir, 2001; Mueller et al., 2005; Lippman et al., 

2007). It has been used to study fruit shape and development (Causse et al., 2004; Brewer et al., 2007; 

Bertin et al., 2009), metabolite composition (Fridman et al., 2004; Tikunov et al., 2005; Schauer et al., 

2006; Tieman et al., 2006; Bertin et al., 2009), flowering time (Jimenez-Gomez et al., 2007), disease and 

fungus resistance (Chaerani et al., 2007; Finkers et al., 2007), tolerance to salinity (Cuartero et al., 2006; 

Villalta et al., 2007) and chilling (John Goodstal et al., 2005). 

The cultivated tomato has limited genetic variability, due to natural and artificial selections that occurred 

during domestication and evolution of modern cultivars (Rick, 1976). However, there are very large 

genetic resources available for research, including modern inbreds, saturated mutagenesis populations 

that support TILLING (Menda et al., 2004; Till et al., 2006), a phenotyped core collection of 7000 

accessions representing heirloom varieties, ancient varieties and wild species, and several inbred lines 

that have been generated by crossing S. lycopersicum with wild relatives from the so-called “esculentum 

complex” (Knapp et al., 2004). The wild species are an especially rich source of desirable genetic 

diversity. In particular, a set of 76 near isogenic lines (NILs) derived from an S. lycopersicum `M82´ x S. 

pennellii cross (Eshed and Zamir, 1994) has been subjected to extensive agronomic, physiological and 

molecular phenotyping (Lippman et al., 2007). This has allowed quantitative trait loci (QTL) to be 

detected that affect morphology and yield (Semel et al., 2006), fruit coloration (Liu et al., 2003), 

metabolite levels (Causse et al., 2004; Fridman et al., 2004; Baxter et al., 2005; Schauer et al., 2006), 

volatile metabolites (Tieman et al., 2006) and antioxidants (Rousseaux et al., 2005). The cultivated 

tomato is one of the first examples of a crop plant that has benefited significantly from exotic germplasm 

introgression (Zamir, 2001; Lippman et al., 2007). 

An expanding range of molecular and genomics tools is available for tomato, including facile 

transformation (Klee et al., 1991), a large EST collection (Van der Hoeven et al., 2002), oligo-based arrays 

(Slocombe et al., 2008; Wang et al., 2009), emerging genome sequence information (Mueller et al., 2005; 

Mueller et al., 2005) and a wide range of phenotyping (Causse et al., 2004) and metabolite profiling 

(Tikunov et al., 2005; Schauer et al., 2006; Fraser et al., 2007) technologies. Very recently, a pre-

publication tomato genome sequence was made available by the International Tomato Genome 

Sequencing Consortium (http://solgenomics.net/). Expression profiling has been used to study 
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transcriptomic changes of six introgression lines along a developmental series (Baxter et al., 2005). 

Metabolite profiling has been applied to analyze changes during fruit development (Carrari et al., 2006), 

to phenotype inbred lines and to identify large numbers of metabolite QTL (Schauer et al., 2006). 

Networks obtained by combining transcript and metabolite profiles have been used to explore metabolic 

programs that underlie tomato fruit development (Carrari and Fernie, 2006) and to shortlist genes that 

may regulate fruit composition (Mounet et al., 2009). 

However, as in other model systems, there is relatively little information available about changes of 

proteins and enzyme activities in tomato fruit. This is at least partly for technical reasons. While custom-

made or commercial arrays are available for transcript profiling, and widely-used techniques like GC-MS 

and LC-MS are available for metabolite profiling, it is still a technical challenge to obtain quantitative 

information about large numbers of proteins (Rose et al., 2004; Baerenfaller et al., 2008) or enzyme 

activities (Mitchell-Olds and Pedersen, 1998; Prioul et al., 1999; Thevenot et al., 2005; Cross et al., 2006). 

While there have been many studies of the developmental changes of small sets of enzymes in tomato 

fruits (e.g. Robinson et al., 1988; Yelle et al., 1988), medium-size surveys are limited to a study of 13 

enzymes during fruit development in S. lycopersicum `Micro-Tom´ (Obiadalla-Ali et al., 2004). The 

availability of wild relatives provides a resource to deepen our understanding of the regulation of central 

metabolism during tomato fruit development. Kortstee et al. (2007) investigated the responses of 9 

enzymes in S. lycopersicum `Moneymaker´ (`MM´) and two wild relatives (S. peruvianum, S. 

habrochaites) of tomato. However, this study was restricted to the first stages of fruit development, 

where the changes in metabolism during fruit ripening are qualitatively similar to those in S. 

lycopersicum, and result in even higher levels of soluble sugars. 

Recently, Faurobert et al. (2007) pioneered the large-scale use of proteomics to document abundance 

changes of 90 proteins during fruit development in a cherry tomato cultivar, including 15 proteins 

associated with carbohydrate metabolism, five with photosynthesis and respiration, nine with amino 

acid metabolism, five with secondary metabolism and one each for vitamin and lipid metabolism. 

Proteins involved in amino acid and protein synthesis were most abundant in very young fruit, proteins 

for photosynthesis and cell wall expansion increased transiently during the expansion phase, and 

proteins related to carbon metabolism and stress rose later in development. However, analogous 

approaches have not yet been applied to wild relatives of tomato. 

We recently established robotized activity assays for over 20 enzymes from central metabolism in 

Arabidopsis leaves (Gibon et al., 2004; Sulpice et al., 2007). This platform has been used to investigate 
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the response of these enzymes to diurnal cycles, to the carbon and nutrient status and temperature 

(Gibon et al., 2004; Gibon et al., 2006; Morcuende et al., 2007; Osuna et al., 2007; Usadel et al., 2008), 

and to map enzyme activity QTL in a Cvi x Ler Arabidopsis RIL population (Keurentjes et al., 2008). Here 

we adapt the existing enzyme profiling platform to measure a large set of enzymes in primary 

metabolism. This platform is used to compare the changes of enzyme activity during fruit development 

in S. lycopersicum `M82´ and S. pennellii. The latter is a wild relative, with a markedly different fruit 

development process in which the mature fruit remains green and contains lower sugar and higher 

organic acid levels than modern cultivars (Schauer et al., 2006). Our main aim was to compare the 

developmental changes of enzyme activities that underlie the differing metabolite profile in these two 

contrasting genotypes, which are the crossing parents for a widely-used NIL population (see above). In 

addition, we have profiled enzyme activities in a second cultivar, S. lycopersicum `MM´. This was done to 

provide a comparison with S. lycopersicum `M82´, and to allow the developmental changes of enzyme 

activities to be compared with large data sets that are already available for the developmental changes 

of metabolites and transcripts in S. lycopersicum `MM´ (Carrari et al., 2006). 

 

 

Results 

Optimization of sample handling and enzyme assays 

The enzymes measured by the platform, their abbreviations and assay principles are listed in Tables S1 

and S2; their EC number, the catalyzed reactions and sites in metabolism are summarized in Fig. S1. 

Standard sample handling involved freezing of tomato fruit pericarp in liquid N2, storage at -80°C, 

homogenization in liquid N2, sub-aliquoting into small weighted aliquots at low temperature, extraction 

by vigorous shaking in extraction buffer, snap-freezing , re-thawing and robotized aliquoting into flat-

bottom microtiter plates, which already contained the assay mix. Activities were mainly measured using 

stopped assays. The inactivated assay mix was stored at -20°C until the next day, neutralized, and the 

product determined, usually in a sensitive enzymatic cycling reaction (cf. Fig. S2). This allows activities to 

be measured at very high dilutions (Gibon et al., 2004) and decreases interference from other 

components in the extract. 

Many enzyme activities are lower in tomato fruits than Arabidopsis leaves. Sample handling and assays 

were therefore re-optimized, as depicted in Fig. S3 with Fructokinase as an example. For routine 
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measurements extraction was performed with a modified buffer with a higher glycerol and Triton-X100 

concentration. Some enzymes showed higher and none showed lower activities (data not shown) 

compared to the buffer used in Gibon et al. (2004). To allow accurate weighting, the standard extraction 

procedure used about 20 mg FW. The optimal dilution ratio for tomato fruit material was between 1 mg 

FW of tomato fruit material per 0.45 to 1.5 ml assay mix for most enzymes (Table S2, Fig. S3A). As all 

enzyme reactions were linear for at least 70 min (Fig. S3B, and data not shown), the duration of the 

stopped assays was standardized as 60 min (cf. Fig. S3B). As two enzymes, FruK (Fig. S3C) and NADP-

IcDH, showed a loss of activity during a freeze-thaw cycle, we routinely assayed all enzymes immediately 

after extract preparation. All dilution and assay steps were performed using a pipetting robot. This 

enabled the measurement of 28 enzyme activities in 80 samples in 2 days. To check that there was no 

loss of activity of enzymes due to inhibitory components in the tomato fruit extracts, spike-in studies 

were performed in which powdered Arabidopsis leaf and tomato pericarp were extracted and assayed 

on their own or were mixed 1:1 before extraction and assayed. Recoveries lay between 67% and 106% of 

the expected values (cf. Fig. S3D and data not shown) 

 

Fruit development in S. lycopersicum `M82´, S. lycopersicum `MM´ and S. pennellii 

Under the established growth conditions, fruit ripening in S. lycopersicum cultivars occurs over a period 

of approximately 70 days after anthesis (DAA) (Carrari et al., 2006). Fruit development in S. lycopersicum 

can be visually monitored by the external index (Fig. 1A) which allows fruit development to be divided 

into four main phases (Gillaspy et al., 1993): (I) cell differentiation, (II) cell division, corresponding to 

small green fruits harvested from 7 to 21 DAA, (III) cell expansion, corresponding to between 28 DAA and 

the first visible carotenoid accumulation (i.e. the breaker stage) at around 45 DAA and 56 DAA in M82 

and MM, respectively, and (IV) fruit ripening, between 49 – 70 DAA and 63 – 70 DAA for M82 and MM, 

respectively. Fruits of the wild relative S. pennellii ripen between 70-80 days after pollination, on or off 

the vine (Grumet et al., 1981). Ripening is characterized by fruit softening which can lead to split-opening 

of the fruits upon slight pressure. However, there are no obvious visual indicators for ripening stages 

(Fig. 1B). It was therefore necessary to develop methods to assess the developmental stage. 

To allow non-destructive monitoring of fruit size, height, i.e. the length from the peduncle attachment to 

the base of the fruit, and diameter were measured, and used to calculate the fruit volume: V = 4/3πabc, 

where a, b and c correspond to the three elliptic radii, with radius a being half the length, and b and c are 

identical and equal to the half-width of the fruit. In a preliminary experiment, these parameters were 



 9

measured and used to calculate the volume, before harvesting and weighing the fruit. The estimated 

volume and weight of the fruit were very similar in S. lycopersicum `M82´ Fig. 1C) and S. pennellii (Fig. 

1D), (R = 0.983 and 0.961, respectively, for both p << 1e-10). 

To investigate the time-dependence of fruit growth in S. lycopersicum, individual flowers were tagged at 

anthesis. The size of S. lycopersicum `M82´ fruit increased in a sigmoidal manner with time, reaching a 

final size (35±10 cm
2
) at about 42 DAA, corresponding to the breaker stage (see Fig. 1A). There was no 

further increase in size during ripening (Fig. 1E). A similar response was seen for S. lycopersicum `MM´ 

(not shown) except that the fruits were larger and breaker stage was not reached until about 56 DAA 

(Carrari et al., 2006). Tagging of individual flowers was not possible for S. pennellii, because the peduncle 

broke under slight pressure. Instead, DAA was estimated for each fruit from time-lapse photos (Fig. 1F). 

S. pennellii fruits grew continuously until 70 DAA. The final size (2.0±0.5 cm
2
) was much smaller than for 

S. lycopersicum cultivars. Fully ripe green fruits were obtained at about 70 DAA, as previously reported 

(see above). These ripe fruits were soft, and some exploded or fell off due to peduncle breakage (data 

not shown). Only fruits which ripened on the vine and did not split were harvested for enzymatic 

analyses. 

 

Developmental changes of enzyme activities in S. lycopersicum `M82´, S. lycopersicum `MM´ and S. 

pennellii 

Enzyme activities were measured in fruits harvested at 28, 35, 42, 49, 56, 63 and 70 DAA for the three 

genotypes. Many of the following analyses exclude 28 and 70 DAA, because fewer samples were 

collected at these stages. The results for DAA 35-63 are summarized in Fig. 2 (see Tables S3-S5 for the 

original data). While each enzyme has a similar activity range, the developmental changes differ between 

genotypes. This is especially so for the comparison between the two S. lycopersicum cultivars and the 

wild relative S. pennellii. 

In S. lycopersicum `M82´, most enzymes have a high activity in the youngest stage, and activity decreases 

during expansion and ripening. There was an especially large decrease of the activities of enzymes 

involved in sucrose degradation (including SuSy, FruK and GlcK), starch synthesis (AGP) and organic acid 

synthesis (PEPC, NAD-MDH). There was a smaller 2- to 3-fold decrease of the activities of enzymes 

required for sucrose synthesis (SPS, UGP), glycolysis (ATP-PFK, aldolase, PGK, pyruvate kinase) and 

several enzymes from the tricarboxylic acid cycle (aconitase, NADP-IcDH, SCS). Enzymes involved in 
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nitrogen metabolism remain relatively high through development (AlaAT, AspAT, NAD-GlDH, ShkDH). 

Several enzymes show relatively high activity at 49 DAA, corresponding to the turning or ‘breaker’ stage. 

Acid invertase activity changed independently of the other enzymes. 

S. lycopersicum `MM´ also showed a decrease in the activity of most enzymes during fruit development. 

Compared to S. lycopersicum `M82´, several enzyme activities were lower at the first harvest point at 35 

DAA (aconitase, AGPase, FruK, NAD-GAPDH, NADP-GAPDH, NAD-MDH, PEPC, pyruvate kinase) and the 

transient peak at 49 DAA was absent or less marked. A weak peak or shoulder was often discernable at 

42 DAA (AlaAT, aldolase, AspAT, ATP-PFK, FruK, G6PDH, NAD-GlDH, NAD-MDH, PEPC, PGI, PGM, pyruvate 

kinase, ShkDH, SPS). 

S. pennellii showed a markedly different developmental pattern. AGP activity was initially high and 

decreased during fruit development. Most enzymes from glycolysis and the tricarboxylic acid cycle 

showed rather stable activities, with a decline in the mid-development and an increase at later stages. 

Several enzymes involved in sucrose synthesis (SPS, UGP, PGM), sucrose breakdown (SuSy) and amino 

acid metabolism (ShkDH, AlaAT, NAD-GlDH) were low in young fruit, and rose during fruit ripening. 

Invertase activity changed independently of the other enzymes, as already seen for the two S. 

lycopersicum cultivars. At 63 DAA, the activities of most enzymes in S. pennellii are comparable to or 

higher than in S. lycopersicum (cf. Fig. 2). 

The data set was next subjected to a series of statistical analyses to investigate whether enzyme activity 

profiles can be used to distinguish between developmental stages and genotypes, and to investigate and 

compare correlation networks in the three genotypes. As the complete data set contained some missing 

values, samples or enzyme activities with a high number of missing values were removed, and box plots 

were used to identify and remove outliers (see Materials and methods) resulting in three separate 

shrunk and outlier-removed data sets for each genotype. They contain data for 27 enzymes for S. 

lycopersicum `M82´, 25 enzymes in S. lycopersicum `MM´ and 25 enzymes in S. pennellii. Validated 

replicated measurements were available for all three genotypes for 22 enzymes. The latter were 

normalized for each genotype, and fused to generate a combined shrunk data set containing data for the 

same 22 enzymes for all three genotypes. An overview of the shrunk data sets is provided in Table S6. 

 

Clustering of enzyme activities in S. lycopersicum `M82´, S. lycopersicum `MM´ and S. pennellii 
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We first investigated whether the developmental changes of enzyme activities allow the fruit samples to 

be clustered into groups that reflect the fruit developmental stage. Clustering was performed separately 

for each genotype, using 27 enzymes for S. lycopersicum `M82´, 25 for S. lycopersicum `MM´ and 25 for S. 

pennellii (Fig. S4). While visual inspection revealed some co-clustering of samples according to fruit age 

at harvest, this was partly masked by the arbitrary order of samples within the individual branches. The 

cluster trees were therefore manually cut at the positions indicated in Fig. S4. This generated three main 

clusters, and an outlier group for each genotype (Table I). 

For S. lycopersicum `M82´, the vast majority of the samples from young fruit (35 DAA) is found in one 

cluster, from mid-development fruit (42-49 DAA) in a second cluster and from ripening fruit (56-70DAA) 

in a third cluster. A similar distribution is found for S. lycopersicum `MM´ (except that the age classes are 

28 DAA, 35-49 DAA and 56-70 DAA) and S. pennellii (except the age classes are 28-42, 49-56 and 63-70 

DAA). In all cases, the outlier group contains samples from DAA 63-70. Thus in all three genotypes, three 

overall groups can be defined: (i) samples harvested in early ‘growth’ related stages, (ii) samples 

harvested during the transition from growth to early ripening and (iii) samples harvested later in the 

ripening process. 

The validity of clusters in Table I were checked by applying a bootstrap strategy to the three underlying 

shrunk matrices followed by consensus tree building (see Material and Methods). The clusters derived 

from the consensus trees (data not shown) were very similar or identical to the clusters in Table I. 

Moreover, a strong Pearson matrix correlation based on Mantel test was found between the non- and 

the averaged bootstrapped matrices (r > 0.98, p < 1e-04). 

 

Principal component analysis of enzyme activities in S. lycopersicum `M82´, S. lycopersicum `MM´ and 

S. pennellii 

We used principal component analysis (PCA) to investigate whether the three genotypes can be 

statistically distinguished by the enzyme activity profiles at the various developmental stages (Fig. 3). 

This cross-genotype analysis was performed with the combined shrunk data set for 22 enzymes. 

The samples from the two S. lycopersicum cultivars were superimposed on each other. The first and 

second components separated them according to their developmental state, with samples from young 

fruits grouping at the upper left hand side and mature fruits in the lower right hand side, with a similar 

trajectory for both cultivars (Fig. 3A). The early stage samples from S. lycopersicum `MM´ were slightly 
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further to the right and lower on the trajectory to mature fruit than the early stage DAA samples from S. 

lycopersicum `M82´, which is consistent with the former maturing slightly later.  

S. pennellii showed a completely different response. The immature fruit samples grouped close to 

partially mature fruits of the commercial cultivars, and mature fruits were clearly separated from the 

modern cultivars. 

The loadings of the enzymes in the first two principal components are shown in Fig. 3B. The separation 

of developmental stages in the modern cultivars and their separation from S. pennellii are driven by a 

large number of enzymes, including invertase, PPi-PFK, PGM, G6PDH, AGP, and NAD-GAPDH, and to a 

lesser extent AlaAT, ShkDH, UGP, aconitase, NAD-MDH, aldolase and FruK. 

 

Network analysis of enzyme activities in S. lycopersicum `M82´, S. lycopersicum `MM´ and S. pennellii 

We next investigated the correlation networks that are generated by computing pairwise correlations 

between enzymes in the developmental series for each genotype (Fig. S5). Although the analysis was 

performed separately for each genotype, to allow comparison between genotypes, we used the shrunk 

dataset of 22 enzymes for which complete data sets were available for all three genotypes. Key features 

of the correlation analysis are summarized in Table II and Fig. 4. There are a large number of correlations 

between enzymes in S. lycopersicum `M82´ and in S. lycopersicum `MM´, and a somewhat smaller 

number of correlations in S. pennellii (cf. Fig. S5).  

Of a total of 231 possible pairwise connections, 151 and 190 were significant (padj < 0.05) in S. 

lycopersicum `M82´ and S. lycopersicum `MM´, respectively. Strikingly, at this significance level, almost all 

of the correlations are positive (Table II). A majority (120) of the pairwise correlations were shared 

between these two genotypes (Fig. 4), emphasizing the strong similarity between the networks in the 

two cultivars. In S. lycopersicum `M82´, the highly connected enzymes (more than 11 out of 22 possible 

connections) included AlaAT, AspAT, aldolase, G6PDH, ATP-PFK, NAD-GAPDH, PGK, PK, PPi-PFK, PGI, 

PGM, SuSy, AGP, SPS, aconitase, NAD-MDH and NADP-IcDH (Table II). These enzymes were all equally or 

even more tightly connected in S. lycopersicum `MM´, except for aconitase. Some enzymes that were 

relatively well connected in S. lycopersicum `M82´ became tightly connected in S. lycopersicum `MM´ 

(e.g. G6PDH, PK, SuSy) and some enzymes that were poorly connected in S. lycopersicum `M82´ became 

tightly connected in S. lycopersicum `MM´ (NAD-GlDH, ShkDH, FruK, UGPase) (Table II). 
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There were fewer pairwise correlations (106) between enzymes in S. pennellii (Fig. 4). Individual enzymes 

with a large number of correlations in S. pennellii included AlaAT, ShkDH, PPi-PFK, NADP-IcDH and UGP, 

and to a lesser extent NAD-GlDH, G6PDH, NAD-GAPDH, PGK, AGP, aconitase and NAD-MDH. Over half 

(63) and three-quarters (83) of the correlations in S. pennellii were shared with S. lycopersicum `M82´ 

and S. lycopersicum `MM´, respectively, and almost half (51) were shared with both modern cultivars. 

This indicates that there is a core set of conserved correlations, which is retained even though the 

developmental changes differ markedly between modern cultivars and the wild related species. Figure 5 

depicts the 51 pairwise enzyme correlations that are shared across all three genotypes (shaded yellow) 

and the correlations that occur in only two (orange, red) or one (grey) of the genotypes. The enzymes 

showing the largest number of shared correlations across all three genotypes were AlaAT and PPi-PFK 

(10 and 9 out of 21, respectively), followed by NAD-GAPDH (8), NAD-MDH (7), UGP, PGM, G6PDH, AGP 

(6), ATP-PFK, PGK, aconitase, NADP-IcDH (5), aldolase, SPS, AspAT, FruK (4), SuSy (3), PGI (2), PK, NAD-

GlDH, ShkDH (1) and invertase (0). The conserved features include many correlations between a set of 

enzymes in the upper part of glycolysis (UGP, PGM, ATP-PFK, PPi-PFK), correlations between enzymes in 

the lower part of glycolysis (NAD-GAPDH and to a lesser extent PGK) with AGP and AspAT, and 

correlations between AlaAT and a set of glycolytic enzymes (PGM, PGI, ATP-PFK, PPi-PFK, NAD-GAPDH), 

G6PDH, aconitase and NADP-ICDH. This highlights an integration of sectors of glycolysis with different 

sectors of nitrogen metabolism. Correlations that are present in both cultivars but absent in S. pennellii 

include a set of pairwise correlations between enzymes in the upper part of glycolysis (PGM, PGI, ATP-

PFK, PPi-PFK, aldolase) and enzymes in the lower part of glycolysis (NAD-GAPDH, PGK, PK) and enzymes 

in starch and sucrose metabolism (SPS, Susy, AGP). This may reflect differences in the metabolism of 

sugars, starch and organic acids in the wild species. NAD-GlDH and invertase change in a rather 

independent manner of other enzymes in all three genotypes. The independent behavior of invertase is 

noteworthy, given that this enzyme may directly affect the accumulation of reducing sugars, which is an 

important metabolic trait in tomato fruit. 

Changes of metabolite and transcript levels during fruit development have already been documented for 

S. lycopersicum `MM´ (Carrari et al., 2006). We used the same samples to analyze enzyme activities. This 

allowed us to fuse our S. lycopersicum `MM´ enzyme activity data set (Table S4) with the metabolite (Fig. 

6, Table S7) and transcript data sets (Table III; Table S8) and perform a joint correlation analysis. For this 

analysis we used the shrunk and outlier-removed S. lycopersicum `MM´ data set for 25 enzymes. 
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Comparison of developmental changes of enzyme activities and metabolites in S. lycopersicum `MM´ 

Fig. 6 summarizes the correlation matrix between 25 enzymes and 85 metabolites during S. lycopersicum 

`MM´ fruit development. Enzymes are placed on the top and to the left, and metabolites are organized 

into structural classes (soluble sugars, sugar-phosphates, tricarboxylic acid cycle intermediates, sugar 

alcohols, fatty acids, amino acids, cell wall components, organic acids, pigments) and placed lower and to 

the right in the matrix. A more detailed display is provided in Table S7. 

As already noted (Figs. 4-5), many enzyme activities correlated with each other in S. lycopersicum `MM´ 

(231 out of 300 possible pairs in the shrunk, 25 enzyme activity ‘MM’ specific dataset, at padj < 0.05). The 

majority of these correlations were positive (see above). As previously discussed in (Carrari et al., 2006), 

there were also many correlations between metabolites (in total, 740 (21%) and 327 (9%) of 3570 

possible pairs at p < 0.05 and p < 0.01, respectively; cf. Table S7). In contrast to enzyme-enzyme pairs, 

75% of the significant (p < 0.05) correlations between metabolites were positive and 25% were negative. 

Positive significant correlations were especially frequent between related metabolites including between 

soluble sugars (with the exception of rhamnose), between a set of metabolites that included 

intermediates from glycolysis and the tricarboxylic acid cycle, lipids and sugar alcohols, between amino 

acids, between sugars isolated from the cell wall residue, and between metabolites involved in ascorbate 

metabolism. There were fewer correlations between enzyme activities and metabolites (in total, 219 

(10%) and 55 (3%) of 2125 possible pairs, p < 0.05 and p < 0.01, respectively). Of these, 41% were 

positive and 59% were negative at significance threshold of p < 0.05. 

The data set contained 28 enzyme-metabolite pairs where the metabolite was either the direct substrate 

or direct product of the enzyme. No positive correlations were found between any enzyme and a 

metabolite that is its direct substrate or product. Two negative correlations were found between an 

enzyme activity and a substrate or product (AlaAT and α-ketoglutarate, and AspAT and α-ketoglutarate, 

p < 0.01 and p < 0.05, respectively, see supplemental Table S9). This indicates that the metabolite profile 

is mainly generated by an interaction between many enzymes, rather than changes of single enzymes. It 

is nevertheless interesting to see that these two amino transferase activities are connected to α-

ketoglutarate, which plays a key role in metabolism as a carbon acceptor during primary ammonium 

assimilation. 

We also searched for correlations between individual enzymes and sets of metabolites that are located 

further upstream or downstream in the pathway in which the enzyme is involved. ATP-PFK showed a 

very strong negative correlation with several tricarboxylic acid cycle intermediates including citrate, 
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aconitate, α-ketoglutarate, fumarate, malate and (at a slightly relaxed p-value of 0.07) isocitrate, but not 

succinate. These correlations are unlikely to be due to a direct consequence of the changes in ATP-PFK 

activity; higher PFK activity would, on the simplest of assumptions, be expected to lead to an increase of 

glycolytic flux and an increase, rather than a decrease, in the levels of organic acids. ATP-PFK was also 

negatively correlated with glycerol-1-P, shikimate, β-carotene, antheraxanthin and zeaxanthin, and 

positively correlated with mannose. Again, there is no obvious simple casual explanation for these 

correlations. As a result of the network structure, many of these correlations are also found for other 

enzymes with which PFK was correlated, including AlaAT (malate, α-ketoglutarate, citrate, isocitrate, 

glycerol-1-P, mannitol, shikimate, antheraxanthin, zeaxanthin, β-carotene) and, more weakly, AspAT and 

pyruvate kinase. 

Another shared response was found for a set of enzymes involved in sucrose degradation and glycolysis 

(SuSy, PGM, PPi-PFK, aldolase, NAD-GAPDH, PEPC). In most cases their activity correlated positively with 

rhamnose, fucose, tyrosine, phenylalanine, valine and galacturonate-1,4-lactone, and negatively with 

xylose, succinate (and less strongly with other organic acids), glutamate, putrescine, ascorbate, 

dehydroascorbate, and the amounts of galactose, mannose, xylose, arabinose and rhamnose in the cell 

wall. Again, many of these correlations are difficult to explain as a direct causal consequence of changes 

in sucrose degradation and glycolysis. 

 

Comparison of developmental changes of enzyme activities and transcripts in S. lycopersicum `MM´ 

Information about the developmental changes of transcripts, monitored using the TOM1 arrays, is 

available in Carrari et al. (2006). This array was created using EST information from 26 diverse tomato 

cDNA libraries, and includes 61 sequences, whose annotation indicated they might encode one of the 

enzymes investigated in the present study (Carrari et al., 2006). A pairwise correlation analysis was 

performed to identify genes whose transcriptional regulation might contribute to the developmental 

changes in enzyme activity reported in the present study (Table S8). 31 gene sequences out of the 61 

correlated with at least one enzyme activity, these results are summarized in Table III. 

Of the 31 gene sequences, only 4 showed a significant positive correlation with the activity (FruK, PPi-

PFK, NADP-GAPDH, PEPC) of the enzyme they should encode for, while 2 showed negative correlations 

(SuSy, AspAT). 
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This comparison could be complicated by the occurrence of gene families. Our measurements of enzyme 

activity provide information about the summed activity of all of the family members. The comparison 

with transcripts assumes that all of the major transcripts are present on the array, and that there are no 

reciprocal changes in the expression of different family members. The array was generated from EST 

sequences from fruit libraries, so it is probable that most or all major family members are represented 

on the array. For some cases, the array contained a family of sequences that was annotated as encoding 

a given enzyme. In such cases, the enzyme activity correlated with one or none of the transcripts. 

We also investigated the correlations between this set of 31 transcripts and all of the other enzyme 

activities. Of the 775 comparisons, 118 showed a significant correlation, with a mix of positive and 

negative correlations. This contrasts with the large predominance of positive correlations between 

enzyme activities. Interestingly, the frequency distribution was highly non-normal, with a high number of 

the transcripts showing no significant correlation (30) or only one correlation (11) (p < 0.05) with an 

enzyme activity, but a small number of transcripts showing correlations to a large number of enzyme 

activities (3 correlated with 6-8, and 4 to 9-13 of the 25 enzymes; Table III and Supplemental Table S8). 

Of these, 4 belonged to the set of transcripts that correlated with the activity of the enzyme that they 

encoded (Table III), including genes annotated to encode FruK, PEPC, SuSy and AspAT. 

 

Discussion 

There have been several small-scale studies of the developmental changes of enzyme activities that are 

involved in starch or sucrose metabolism (Robinson et al., 1988; Yelle et al., 1988), and a larger study of 

eleven glycolytic enzymes (Obiadalla-Ali et al., 2004) in tomato fruit. More recently, these studies of 

enzyme activities have been complemented by proteomic analyses during fruit ripening (Rose et al., 

2004; Faurobert et al., 2007). We have now investigated the activities of 28 enzymes during tomato fruit 

development, located in most of the major pathways in central metabolism. The developmental changes 

of these enzymes in two modern S. lycopersicum cultivars (M82 and MM) were compared with the 

changes in a wild relative, S. pennellii, which differs from the modern cultivars in being much smaller, 

containing higher levels of organic acids, slightly lower sugars, and remaining green at maturity. 

 

Enzyme activities in developing fruits of S. lycopersicum cultivars 
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In the two S. lycopersicum cultivars, most enzyme activities decrease during fruit development (Fig. 2). 

While there were some differences between cultivars, this may be at least partly due to difference in the 

rate of fruit development. We have expressed enzyme activities on a fresh weight basis. The general 

trend to a decrease may be at least partly due to vacuole expansion during earlier stages of the ripening 

process. There are nevertheless clear differences between the responses of different types of enzyme. 

Overall, the capacity for sucrose hydrolysis to reducing sugars remains high or increases, the capacity for 

sucrose synthesis remains high, and the capacity for the use of hexose sugars, glycolysis and the 

tricarboxylic acid cycle decreases strongly during fruit development. A similar general decrease for 

enzymes from sucrose breakdown, starch synthesis and glycolysis was found in S. lycopersicum 

MicroTom (Obiadalla-Ali et al., 2004) and in cherry tomato by (Faurobert et al., 2007). 

Very large decreases of activity were found for three enzymes (SuSy, FruK, GlcK) that are required to 

mobilize sucrose and reducing sugars. In contrast, invertase activity remained high. This resembles 

earlier result of Obiadalla-Ali et al. (2004) for two further cultivars, and the pattern seen in proteomics 

studies with cherry tomato, where FruK abundance decreased and several isoforms of invertase 

increased (Faurobert et al., 2007). However, the overlap between proteins measured in the previous and 

current studies and the varietal differences still prevents a comprehensive comparison. Invertase serves 

to convert sucrose into hexoses (Nguyen-Quoc and Foyer, 2001). The decrease of GlcK and FruK activity 

and maintenance of invertase activity is accompanied by a progressive increase of hexoses and decline of 

sucrose as tomato fruits mature (Ho, 1984; Yelle et al., 1991; Carrari et al., 2006). 

Activities of enzymes for sucrose synthesis (especially SPS) were substantial in young fruits, and 

remained relatively high during ripening. This in agreement with published studies, in which 
14

C-glucose 

was used to measure fluxes. These showed that sucrose synthesis occurs at high rates at all stages of the 

ripening process (Carrari et al., 2006), resulting in a ‘futile cycle’ of sucrose breakdown and synthesis 

(Nguyen-Quoc and Foyer, 2001; Rontein et al., 2002). AGPase activity decreased 3-fold during fruit 

development. Starch may serve as a temporary store of carbon. Simultaneous synthesis and degradation 

of starch has been reported at several stages of tomato fruit development (N'tchobo et al., 1999). ‘Futile’ 

cycles of sucrose and starch turnover are also found in other growing storage organs (Hill and ap Rees, 

1994; Geigenberger and Stitt, 2000; Geigenberger et al., 2004). They may allow sensitive regulation of 

flux, by mediating an alternation between transient storage and remobilization depending on the 

momentary influx of photoassimilates (Geigenberger et al., 1994; Geigenberger et al., 2004). 
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There was a general decrease of the activities of enzymes in glycolysis and the tricarboxylic acid cycle 

during fruit ripening. This included a very large decrease of PEPC activity, which is required for net 

synthesis of organic acids, and smaller changes of many other enzymes. The labeling experiment of 

Carrari et al. (2006) showed that glycolytic flux is maintained, and may even increase, between 35 and 49 

DAA. It appears that this occurs independently of developmental changes in the maximal activities of 

enzymes from these pathways. Enzymes involved in N metabolism remained high or increased, relative 

to the activities of enzymes in central C metabolism. This resembles changes of protein levels of enzymes 

involved in nitrogen metabolism reported by Faurobert et al. (2007) and is consistent with the reported 

increase in flux to amino acids between DAA 35 and 49 (Carrari et al., 2006). 

 

Differing developmental changes of enzyme activities in fruits of S. pennellii 

A different picture emerged in S. pennellii (Fig. 2), where most enzyme activities remained stable or even 

rose during fruit development. Particularly marked increases of activity were found for SuSy, UGPase, 

PGM, SPS, ATP-PFK and for enzymes in N metabolism, especially AlaAT and shikimate DH. There was also 

a general increase of the activities of all of the enzymes in the tricarboxylic acid cycle in the later stages 

of fruit development. The only enzyme to show a marked and sustained decrease of activity during 

ripening was AGPase.  

When young (DAA 35-42) and mature S. pennellii fruits are compared, there is a shift away from starch 

synthesis, and towards sucrose turnover, glycolysis, and metabolism of organic acids. In contrast to S. 

lycopersicum, the capacity of enzymes in these central metabolic pathways is maintained and even 

increased during fruit maturation in the wild relative. This may reflect the fact that S. pennellii fruits 

continue to grow until maturity. S. lycopersicum fruits complete physical growth by 42-49 DAA, and the 

subsequent stages involve metabolic transformations, but no major net growth of the fruit (Fig. 1).  

These differences in enzyme profiles explain, at least qualitatively, some of the previously reported 

differences in the metabolic composition between S. lycopersicum and S. pennellii, including the higher 

levels of organic acids, especially malate, higher levels of shikimate and slightly lower levels of reducing 

sugars (Schauer et al., 2006). On the other hand, a decrease in the capacity for starch accumulation may 

be a common feature of fruit development in tomato and its wild relatives. 
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Enzyme activity profiles are diagnostic for the stage of development and the genotype 

The developmental profiles of enzyme activities during development in S. lycopersicum cultivars and S. 

pennellii were sufficiently characteristic to allow them to be used to classify fruits according to the 

genotype and the stage of development (Fig. 3, Table I). Principal components analysis of the two S. 

lycopersicum cultivars separated the samples corresponding to the different developmental stage, with 

samples from one cultivar overlapping those of the other cultivar. Clustering of enzyme activities 

identified three main groups of samples that corresponded with three phases of fruit development. This 

contrasted to S. pennellii, which showed a very different separation in the principal components analysis, 

with the young fruit resembling mid-stage S. lycopersicum fruit, and a completely different trajectory 

during maturation. Clustering of the enzyme activities nevertheless identified three main groups of fruit 

samples, which again corresponded well with three phases of S. pennellii fruit development. These were 

different to the developmental stages in the modern tomato cultivars. 

 

Enzyme activities change in a coordinated manner during development 

Enzyme activities change to a varying extent and at different times during development, and the 

response differs between S. lycopersicum cultivars and S. pennellii. We performed a global correlation 

analysis in each genotype to identify pairs and larger sets of enzymes that show a particularly 

coordinated response in a given genotype. We then compared the resulting correlation matrices to learn 

whether any of these coordinated responses are shared between the two cultivars and, in particular, 

between the modern cultivars and the wild species. 

At a cut off of padj < 0.05, 65% and 82% of the enzyme pairs changed in a correlated manner during fruit 

development in S. lycopersicum `M82´ and S. lycopersicum `MM´, respectively. At this significance level, 

almost all the correlations were positive (Table II). The majority of the correlations were shared between 

the two cultivars, underlining the coordinated nature of the developmental changes in S. lycopersicum 

fruits. Somewhat less significant correlations that were detected in S. pennellii (46% of the enzyme pairs) 

but, of these, the majority were shared with one or both of the S. lycopersicum cultivars (Fig. 5). This 

overlap is striking because many enzymes show opposing changes during fruit development in S. 

pennelli, compared to S. lycopersicum. These results indicate that basic regulatory programs that 

generate these coordinated changes are operating on both of these species, but the developmental 

timing of these programs has been changed. 
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Coordinate changes of the activities of many enzymes may be required to allow changes in flux through a 

pathway. It is well established that changes of 2-fold or more in the activity of single often have little or 

no effect on flux, even though they may have larger effects on the levels of metabolic intermediates 

(Stitt and Sonnewald, 1995; Geigenberger et al., 2004; Stitt et al., 2009). 

Intriguingly, some enzymes that would usually be assigned to the same metabolic pathway show 

differing responses during fruit development. For example, invertase shows a remarkably different 

developmental response to SuSy, which is the other enzyme that can mobilize sucrose. Invertase also 

shows a very different response to GlcK and FruK, which are required to utilize the reducing sugars that 

are produced by invertase. This is consistent with the proposal that the main role of invertase during 

tomato fruit development may be to generate reducing sugars that are stored in the vacuole (Nguyen-

Quoc and Foyer, 2001), whereas the SuSy functions to mobilize sucrose, and FruK and GlcK may be 

involved in both functions. 

Changes in gene expression will make a contribution to determining enzyme activities, which in turn will 

play a major role in determining the metabolic profile. Analysis of a large metabolite profiling data set for 

developing fruit of S. lycopersicum `MM´ has already revealed many correlations between metabolites 

(Carrari et al., 2006), and analysis of a large transcript profiling data set for developing fruit of S. 

lycopersicum `MM´ has revealed many correlations between transcripts (Carrari et al., 2006). We took 

advantage of the fact that our measurements of metabolites in S. lycopersicum `MM´ used the same 

material as that used for these analyses of metabolites and transcripts to investigate connectivity 

between all three functional levels during tomato fruit development. 

 

Connectivity between enzyme activities and metabolites  

As already discussed, there is a high frequency of correlations between enzyme activities, and these 

correlations are almost all positive, (Fig. 6, Fig. S3). The combined correlation matrix between enzymes 

and metabolites has a slightly lower frequency of correlations between metabolite-enzyme pairs than 

between enzyme-enzyme pairs or metabolite-metabolite pairs, and many of the correlations between 

metabolites and enzymes are negative (Fig. 6). Metabolites also show many correlations with each other, 

with almost equal numbers of positive and negative correlations (Carrari et al., 2006). The negative 

correlations between enzymes and metabolites are presumably generated because increased activity of 

an enzyme can lead to a decrease in the levels of metabolites that are located downstream of the 
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enzyme, whereby this can be due to its position in a pathway, or in a regulatory loop. It can be envisaged 

that this, in turn, generates the mix of negative and positive correlations that is seen in metabolite 

profiles. 

The changes of individual metabolites, however, cannot be readily explained from the changes of 

individual enzyme activities. Our data matrix contained many examples of metabolite-enzyme pairs 

where the metabolite was the direct substrate or product of the enzyme. Among these there were no 

positive correlations, and only two negative correlations involving α-ketoglutarate and AlaAT or AspAT. A 

similar complexity remained when the matrix is analyzed at the level of pathways. For example, even 

though fruit development was associated with a general decrease of the levels of many glycolytic 

enzymes, most organic acids stabilize or increase during the later stages of fruit development in S. 

lycopersicum `MM´ (Carrari et al., 2006). This is reflected in the negative correlations between ATP-PFK 

and citrate, aconitate, 2-oxoglutarate and malate, and negative correlations between succinate and 

several other enzymes for sucrose degradation and glycolysis (Fig. 6). This implies that the metabolic 

profile is generated by an interaction between many enzymes, leading to a complex and not easily-

predictable situation when many enzymes are changing simultaneously. As another example, a set of 

enzymes involved in sucrose degradation and glycolysis (SuSy, PGM, PPi-PFK, aldolase, NAD-GAPDH, 

PEPC) that were negatively related to succinate showed opposing correlations to metabolites that are 

located upstream of them (e.g. positive correlations to some sugars and negative correlations to others). 

There is also no obvious explanation why these enzymes correlate positively with minor amino acids like 

phenylalanine, tyrosine, isoleucine and valine, but negatively with glutamate, from which the amino 

group for the synthesis of these amino acids is derived, or for why they correlate with changes in the 

levels of different sugars in the cell wall residue. 

The level of a metabolite presumably depends on the balance between its synthesis and consumption. It 

is possible that the negative correlations between glycolytic enzymes and organic acids noted in the 

previous paragraphs could be resolved by extending the analysis to include pathways that consume 

organic acids, like the mitochondrial electron transport chain and biosynthetic processes like protein 

synthesis. However, the highly coordinated changes of many enzyme activities will, paradoxically, make 

it more difficult to predict the impact on metabolite levels. In the extreme case, increasing the activities 

of all the enzymes in a given sector of metabolism could increase fluxes without having any effect at all 

on the levels of the metabolic intermediates (Kacser and Acerenza, 1993). Our joint analysis of enzyme 

activities and metabolites indicates that the metabolite profile is an emergent property that cannot be 

readily predicted from enzyme activities alone. Knowledge of the topology of the metabolic network will 
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also be required, including not only information about the location of the enzymes, but also about their 

regulatory properties and how these link enzymes at different sites in the metabolic network. 

 

Relation between transcript levels and enzyme activities  

Analysis of a large transcript profiling data set for developing fruit of S. lycopersicum `MM´ revealed 

many correlations between the levels of different transcripts (Carrari et al., 2006). When this data set is 

combined with our data set for enzyme activities, the connectivity between the developmental changes 

of transcripts and enzymes was rather limited. Of 31 comparisons between a transcript and an encode 

enzyme, we found only four positive correlations, and two negative correlations. This comparison could 

be complicated by the occurrence of gene families. As the array was generated from EST sequences from 

fruit libraries, and it is probable that most or all major family members are represented on the array. Our 

measurements of enzyme activity provide information about the summed activity of all of the family 

members, and the comparison with transcripts assumes that all of the major transcripts are present on 

the array, and that there are no reciprocal changes in the expression of different family members. The 

results are nevertheless in general agreement with other studies which have found short term changes 

responses of transcripts and these enzyme activities are almost unrelated, and long term changes some 

show agreement (Gibon et al., 2004; Gibon et al., 2006; Morcuende et al., 2007; Osuna et al., 2007; 

Usadel et al., 2008). Combining this result with the analysis of the connectivity between enzyme 

activities and metabolites (see above) indicates that, at least for tomato fruit development there is a low 

level of connectivity between transcript levels and maximum enzyme activities, and even less between 

enzyme activities and metabolite levels. This may be a consequence of the complex networks that link 

events at these different functional levels. 

 

In conclusion, our analyses of enzyme activity profiles in modern cultivars and in the wild relative S. 

pennellii lead to two main conclusions. First, the developmental changes of enzyme activities in S. 

pennellii differ markedly from those in modern tomato cultivars. This provides an underlying explanation 

for the large differences in metabolite profiles between S. pennellii and modern cultivars, and for the 

large variation in metabolite levels in near isogenic lines created by crosses between S. pennellii and S. 

lycopersicum `M82´. Second, there are complex connectivities between individual enzymes, and 

surprising little connectivity between transcript levels and the activities of the coded enzyme, and 
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between enzyme activities and the metabolite profile during tomato fruit development. Analysis of QTLs 

for enzyme activities in near isogenic lines could provide further insights into the complex genetic 

architecture that controls metabolite contents in tomato. 

 

Materials and Methods 

 

Materials 

Inorganic compounds were purchased from Merck (Darmstadt, Germany), organic compounds from 

Sigma (Taufkirchen, Germany), except ethanol (Merck) and NAD
+
, NADH, NADP

+
, NADPH, 

phosphoenolpyruvate (Roche, Mannheim Germany). Enzymes for analysis were purchased from Roche 

except phosphoglycerokinase and glycerokinase (Sigma-Aldrich). UMP-kinase was overexpressed and 

purified as described in Serina et al. (1995). The clone encoding for the UMP-kinase is a generous gift 

from Octavian Barzu (Institut Pasteur, Paris, France). 

 

Plant material and growth 

Solanum lycopersicum `M82´ seeds were kindly provided by Stephan Krueger (Max Planck Institute of 

Molecular Plant Physiology, Potsdam-Golm, Germany). Seeds of Solanum pennellii (LA0716) were 

obtained from true-breeding monogenic stocks (CM Rick Tomato Genetics Resource Center, University of 

California, Davis USA). 

All seeds were germinated on Murashige and Skoog medium (Murashige and Skoog, 1962) containing 2% 

(w/v) sucrose and were grown in a growth chamber with 500 μmol photons m
-2

 s
-1

 at 25°C temperature 

under a 12h-light / 12h-dark regime. After two weeks seedlings were transplanted into individual 20 cm 

pots containing 12 g Osmocote exact 5-6 M used as fertilizer in mixed tomato soil consisting of 2 parts of 

standard potato soil, 1 part quartz sand (grain size 0.3 – 0.8 mm), 1 part vermiculite (fine grain). These 

pots were transferred to the greenhouse where they were grown in parallel under long day conditions 

with a minimum of 250 μmol photons m
-2

 s
-1

 at 20-24°C temperature and 60-70% relative humidity under 

a 16 h light / 8 h dark regime. 
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Samples of S. lycopersicum `MM´ from 28 DAA to 70 DAA were grown and sampled under conditions 

described in Carrari et al. (2006). 

Fruits were harvested at different stages of development based on their color for M82 and/or on the 

number of days after anthesis (DAA) for other genotypes. Individual flowers were tagged at anthesis to 

accurately follow fruit ages through development. As the attachment of S. pennellii peduncle to the stem 

is very fragile, tagging of individual flowers was only possible for few flowers. To avoid peduncle 

breaking, fruit development in S. pennellii was followed by photographing plants to determine the DAA 

for each fruit in conjunction with determination of the increase in fruit size. Fruit height and diameter 

were measured with a caliper of fruits either still attached to the vine or directly after harvesting. 

Tomato fruits were harvested at the middle (S. lycopersicum `MM´) or the end (S. lycopersicum `M82´, S. 

pennellii) of the light period. To follow tomato fruit development, fruits were harvested at 7-day 

intervals between 7 DAA (S. lycopersicum `M82´) or 28 DAA / DAF (S. lycopersicum `MM´, S. pennellii) to 

70 DAA / DAF, which represents the ripe stage of fruit development. For the red-fruited S. lycopersicum 

cultivars the period of 28 to 70 DAA covers the full transition from green to fully ripe red fruits. All fruits 

were weighted immediately upon harvesting and cut in two parts. The pericarp was then separated from 

the placental tissue, immediately frozen in liquid N2 and stored at -80°C. At each time point, with 

exception of 28 and 70 DAA, 5-10 replicate samples from a single separate fruit were collected. 

 

Sample extraction 

For determining enzyme activities, each sample was ground to a fine powder under liquid nitrogen and 

stored at -80°C until use. Samples (~20 mg fresh-weight; FW) were weighed out at -180°C and extracted 

by addition of 10 mg (w/v) polyvinylpolypyrrolidone (PVP) and vigorous shaking in 300 µL of ice-cold 

extraction buffer. The latter was modified from that in Gibon et al. (Gibon et al., 2004) with higher 

amount of glycerol (20% (v/v)) and Triton-X100 (2% (v/v)). The crude extract was centrifuged for 10 

minutes at 20,000 g and 4°C. Aliquots of the extract were further diluted to a final dilution of 1 mg FW in 

150 – 15000 µl extraction buffer for use in different enzyme assays (see Table S2). Enzymes were 

measured immediately, or after snap-freezing small aliquots (50 – 100 μl) at -180°C, storage at -70°C and 

re-thawing. 

 

Enzyme assays 
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Assay mixes and extracts were transferred to microtiter plates using a Perkin-Elmer Multiprobe II. 

Reaction on plates were started and stopped using a Perkin-Elmer EP3 equipped with a 50 µl head. 

Determinations of the reactions were measured with Bio-Tek Elx800, Elx808 and Synergy microtiter plate 

readers. 

 

Continuous assays:  

Triose phosphate isomerase (TPI) and phosphoglucose isomerase (PGI) were assayed as described in 

(Burrell et al., 1994) and in (Cross et al., 2006), respectively. Phosphoglucose mutase (PGM) and NAD-

dependent malate dehydrogenase (NAD-MDH) were assayed according to Gibon et al. (2009). 

Stopped assays: 

Acid invertase (Inv) was assayed in the direction of sucrose breakdown to fructose and glucose. Extracts 

were incubated in a solution containing 50 mM Acetate/KOH, pH 5.0 and 20 mM sucrose, and the 

reaction stopped with 20 µl 0.5 M NaOH after 20 min (blank) or 40 min (maximal activity). After 

neutralization, products were determined (Fig. S2B) by preincubating at 30°C with 60 mM ATP, 50 mM 

NADP and 2 units ml
-1 

G6PDH, followed by the addition of 1 unit ml
-1

 HK and 1 unit ml
-1

 PGI. Absorbance 

was followed
 
at 340 nm until the signal stabilized. 

Stopped assays coupled to a glycerol-3-P (Gly3P) cycle: as described in Gibon et al. (2004) with an 

optimized incubation time of 60 min for tomato fruit samples. 

ADP-glucose pyrophosphorylase (AGP), NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 

(NAD-GAPDH), NADP-dependent GAPDH (NADP-GAPDH), pyrophosphate: fructose-6-phosphate 1-

phosphotransferase (PPi-PFK), pyruvate kinase (PK), sucrose phosphate synthase (SPS) were adapted 

from Gibon et al. (2004). ATP-phosphofructokinase (ATP-PFK), UDP-glucose pyrophosphorylase (UGP) 

and sucrose synthase (SuSy) were adapted for tomato fruit measurements (see table S1) from the 

method described by Keurentjes et al. (2008). Succinyl CoA ligase (SCS) was adapted for tomato fruit 

measurements (see table S1) from the method described by Studart-Guimarães et al. (2005). 

Phosphoglycerokinase (PGK) was adapted from Burrell et al. (1994) and was measured in the forward 

direction from the transfer of a phosphate from ATP to 3-phosphoglycerate resulting in 1,3-

biphosphoglycerate and ADP. Extracts as well as dihydroxyacetone phosphate (DHAP) standards 

prepared in the extraction buffer and ranging from 0 to 1 nmol, were incubated in a solution containing 

100 mM Tricine/KOH pH 8, 5 mM MgCl2, 10 mM KCl, 0.5 mM EDTA, 0.5 mM 3-phosphoglycerate (PGA), 1 
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unit GAPDH-NAD, 0.2 unit GDH, 0.5 mM DTT, 30 µM NADH and 0 (blank) or 0.5 mM (maximal activity) 

ATP. The reaction was started by the addition of PGA and stopped with
 
20 µl of a solution containing 0.5 

M HCl and 0.1 M Tricine/KOH pH 8.5.  

Fructose 1,6-bisphosphate aldolase (FBP-Aldolase or Ald) was adapted from Haake et al (1998) and 

assayed in the direction of breaking the fructose 1,6-bisphosphate down into glyceraldehyde 3-

phosphate and DHAP. Extracts as well as DHAP standards prepared in the extraction buffer and ranging 

from 0 to 1 nmol, were incubated in a solution containing 100 mM Tricine/KOH pH 8.5, 5 mM MgCl2, 1 

mM EDTA, 2 units.ml
–1

 GDH, 1 unit.ml
–1 

TPI, 5 mM NADH and 0 (blank) or 5 mM (maximal activity) FBP. 

The reaction was started by the addition of TPI andstopped with
 
20 µl of a solution containing 0.5 M HCl 

and 0.1 M Tricine/KOH pH 8.5. 

For all assays, the stopped assay was neutralized and Gly3P was measured as described in Gibon et al. 

(2002). 

Stopped assays coupled to a NADPH Cycle modified from Gibon et al., (2004): In these assays, NADPH is 

formed as a product, and is determined via an enzymatic cycle between G6PDH and phenazine 

ethosulfate (PES). G6PDH catalyses a G6P-mediated conversion of NADP
+
 into NADPH,H

+
, and PES 

converts NADPH,H
+
 back to NADP

+
. The reduced PES is reoxidized by 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT), leading to accumulation of reduced MTT which is measured 

spectrophotometrically.  

Glucokinase (GlcK), fructokinase (FruK), glucose-6-P dehydrogenase (G6PDH), NADP-dependent 

isocitrate dehydrogenase (NADP-IcDH), shikimate dehydrogenase (ShkDH), were assayed as described by 

Gibon et al. (2004). 

The aconitase assay was adapted from Jenner et al. (2001) and measured in the direction of the 

hydration of aconitate to form isocitrate. Extracts as well as isocitrate standards prepared in the 

extraction buffer and ranging from 0 to 1 nmol, were incubated in a solution containing 100mM 

Tricine/KOH pH 7.5, 1 mM MgCl2, 0.5 mM NADP, 0.2 unit NADP-isocitrate dehydrogenase and 0 (blank) 

or 1 mM (maximal activity) aconitate. The reaction was started by the addition of NADP-isocitrate 

dehydrogenase. 

After 60 min incubation, conditions optimized for tomato fruit samples, all reactions were stopped with
 

20 µl of 0.5 M NaOH. To destroy unreacted NADP
+
, the plates were mixed and centrifuged (2 min at 3500 

g), sealed using an adhesive aluminum foil and heated at 95°C for 5 min. After cooling down, 20 µl of a 
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solution containing 0.5 M HCl and 0.1 M Tricine/KOH pH 8.5, was added to adjust the pH to 8.5. NADPH 

was determined by a method modified from Gibon et al. (2002) in the presence of 3 units.ml
-1

 G6PDH 

grade I, 100 mM Tricine/KOH, pH 9.0, 5 mM MgCl2, 4 mM EDTA, 0.1 mM phenazine ethosulfate (PES), 0.6 

mM MTT and 3 mM glucose-6-P. The absorbance was read at 570 nm and 30°C until the rates were 

stabilized. The
 
rates of reactions were calculated as the increase of the absorbance

 
in mOD min

–1
. 

Stopped assays coupled to a NAD
+
 Cycle: The basis for these assays is the enzymatic cycle between ADH 

and PES. ADH catalyses an EtOH-mediated conversion of NAD
+
 into NADH,H

+
, and PES converts NADH,H

+
 

back into NAD
+
 and simultaneously reduces MTT, analogous to the NADPH cycle (see above). 

Alanine aminotransferase (AlaAT), aspartate aminotransferase (AspAT), fumarase, NAD-dependent 

glutamate dehydrogenase (NAD-GlDH) and phosphoenolpyruvate carboxylase (PEPC) were assayed as 

described by Gibon et al. (2004). The reactions were incubated for 60 min (conditions optimized for 

tomato fruits samples) and stopped by 20 µl of 0.5 M NaOH. To destroy unreacted NADH, the plates 

were mixed and centrifuged (2 min at 3500 g), sealed using an adhesive aluminum foil and heated
 
at 

95°C for 10 min. After cooling down, 20 µl of a solution containing 0.5 M HCl and 0.1 M Tricine/KOH pH 

8.5, was added to adjust the pH to 8.5.
 
NAD

+
 was measured in the presence of 6 units·ml

–1 
ADH, 100 mM 

Tricine/KOH, pH 8.5, 4 mM EDTA, 0.1 mM PES, 0.6
 
mM MTT, and 500 mM ethanol. The absorbance was 

read at 570 nm
 
and 30°C until the rates were stabilized. The rates of

 
reactions were calculated as the 

increase of the absorbance
 
in mOD min

–1
. 

 

Graphical visualisation and heat maps 

All graphs and heat maps were created using Sigma Plot 10 (Systat Software Inc., San Jose, CA, USA), 

Microsoft Powerpoint / Excel (Microsoft Office 2007, Microsoft, USA) or the R 2.6.1 software (R 

Development Core Team 2007). Heat maps, generated with R, were further processed using Adobe 

Photoshop 7.0 (Adobe systems Inc., Mountain View, CA, USA). Cluster trees drawn in the heat maps 

were generated by using hierarchical cluster analyses (HCA) with the average linkage cluster algorithm 

(UPGMA) (cf. Mirkin, 1996). 

 

Statistical data analysis and classification 
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Statistical analyses were implemented in and performed with R; or available R functions were used. For 

some cases, e.g. t-test, the available Microsoft Excel (Microsoft Office 2007, Microsoft, USA) functions 

have been used. 

The parametric Two Sample t-test (T) for the difference in mean was performed two-sided using the 

available R function and executed with equal or unequal variance analyzed using Hartley’s Fmax-test 

(Hartley, 1950; Sokal and Rohlf, 1995). The obtained p-values (p) were adjusted for multiple testing by 

Bonferroni correction (padj). To avoid the influence of outliers, one-dimensional outliers were detected 

and removed by a boxplot approach performed with standard parameters as implemented in R. Data 

points which lie beyond the extremes of the whiskers are treated as outliers and were removed from 

further analysis. 

Correlation analyses among all enzyme activities were performed as parametric Pearson’s product-

moment correlation (r) in a robust way. For this, two-dimensional outliers were detected by calculating 

the robust Mahalanobis distance based on a robust estimate of the centre and the covariance with the 

minimum volume ellipsoid (MVE) estimator (Rousseeuw and Leroy, 2003). As the observed distances are 

approximately chi-square distributed with p degrees of freedom (χ
2

p), outliers were detected by using 

the 97.5% quantile with 2 degrees of freedom and removed from pairwise correlation analyses. To adjust 

p-values (padj) from correlation analysis for multiple comparisons the Benjamini-Hochberg correction 

(Benjamini and Hochberg, 1995) was applied to control the false discovery rate. The degree centrality 

was calculated for each enzyme by counting the number of significant connections with adjusted padj < 

0.05. 

In the case of symmetrical correlation matrices only the half- matrix without the diagonal was 

considered. 

The Mantel test, as a matrix correlation between two dissimilarity matrices, was performed as 

parametric Pearson correlation with 9999 bootstrap samples (Sokal and Rohlf, 1995). Fisher’s exact test 

to estimate potential enrichments of classes (cf. Sokal and Rohlf, 1995) was executed in R. 

Principal component analyses (PCA) was performed as probabilistic PCA with the pcaMethods package to 

handle missing values (Stacklies et al., 2007). The shrunk data sets for each genotype were normalized 

separately by calculating the ratio for each particular enzyme in each sample to the mean average 

activity of the corresponding enzyme in the entire sample group 42 DAA, the ratios were log 2 

transformed, and the shrunk genotype specific datasets then fused. For that, enzymes measured in only 
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one or two out of the three genotypes were excluded. The resulting fused dataset contains 135 samples, 

corresponding to individual and genotype-specific developmental groups, and 22 enzymes with about 

9.9% missing values. 

All hierarchical cluster analyses (HCA) were performed with the average linkage cluster algorithm 

(UPGMA) (cf. Mirkin, 1996) on distance matrices which were generated by calculating the Euclidean 

distances between the samples under investigation. Correlation matrices subjected to HCA were first 

converted into corresponding distance matrices by using the equation 1-r. Clustering was performed on 

the shrunk datasets for each genotype; log-base 2 transformed ratios were calculated to the average 

enzyme activity of the respective 42 DAA samples for each enzyme in each different dataset. Therefore, 

changes in the sign of the log base 2 transformed ratios for S. lycopersicum `M82´ would correspond to 

an increase or decrease of an enzyme activity compared to the transition from fruit growth to ripening 

(Fig. S3). This transition occurs slightly later in S. lycopersicum `MM´; but high and significant Pearson 

matrix correlations were found between Euclidean distance matrices generated on log base 2 

transformed ratios of 42 and 49 DAA (data not shown), both for enzymes and for DAA samples (r = 0.947, 

p < 1e-04 and r = 1.0, p < 1e-04, respectively). This analysis demonstrated that a similar classification 

regarding enzyme and DAA can be obtained independently of the DAA used for normalization and ratio 

calculation. No specific transition stage could be visually detected for S. pennellii. Thus, the dataset was 

normalized to DAA 42 in an identical manner as described for both tomato cultivars. 

To test the validity of obtained cluster results, datasets used in this study were bootstrapped with 999 

repetitions by replacing one value by a value randomly selected from a normal distribution with the 

calculated mean and standard deviation for each sample and each enzyme measured, respectively. The 

Euclidean distances for each generated matrix were calculated and the resulting distance matrix 

subjected to HCA as described above. The generated cluster trees were converted with R into a Newick 

tree format. The resulting consensus tree was generated with the consensus program of the PHYLIP 

package (Felsenstein, 2004) of all bootstrapped cluster trees. The validity of resulting clusters was tested 

by nonparametric analysis of variance (ANOVA) using the Mantel test, which was computed as Pearson’s 

correlation between two distance matrices as described (Sokal and Rohlf, 1995) with 9999 row and 

column permutations. The average matrix was computed as the mean average over all bootstrapped 

matrices. 

 

Supplemental material 
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Supplemental Figure S1. Simplified scheme of the carbohydrate metabolism and associated reactions.  

Supplemental Figure S2. Scheme of the enzyme assays. 

Supplemental Figure S3. Optimization of the extraction and enzyme assay exemplarily depicted for 

fructokinase. 

Supplemental Figure S4. Heat map visualization and cluster tree representation based on enzyme 

activities. 

Supplemental Figure S5. Heat map visualization and cluster tree representation of enzyme correlations 

according their activity changes during fruit development. 

 

Supplemental Table S1. Overview of the optimized enzyme assays, their EC number, the abbreviations 

used in this work and the principle of the assay. 

Supplemental Table S2. Overview of the enzyme assays, their optimal range of dilution and the dilution 

factor chosen for this work.  

Supplemental Table S3. Comparison of the maximal enzyme activities of S. lycopersicum `M82´ tomato 

fruit pericarp harvested at different days after anthesis (DAA). 

Supplemental Table S4. Comparison of the maximal enzyme activities of S. lycopersicum `Moneymaker´ 

tomato fruit pericarp harvested at different days after anthesis (DAA). 

Supplemental Table S5. Comparison of the maximal enzyme activities of S. pennellii tomato fruit pericarp 

harvested at different days after flowering (DAF). 

Supplemental Table S6. Overview of complete (cpl) and shrunk (shr) enzyme activity datasets for the 

different cultivars and species under investigation. 

Supplemental Table S7. Correlation matrix between enzymes and metabolites during fruit development 

in S. lycopersicum `MM´. 

Supplemental Table S8. Correlation matrix between enzymes and transcripts during fruit development in 

S. lycopersicum `MM´. 

Supplemental Table S9. Pearsons correlation coefficient for all enzyme-metabolite pairs, where the 

metabolite is a direct substrate or product of the enzyme, plus the p-value of the correlation coefficient. 
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Table I. Overview of clusters obtained from average linkage clustering on Euclidean distances among 

the DAA groups for the different cultivars and species under investigation. The original cluster tree and 

the manual cut clusters are shown in Supplemental Figure S3. Cluster assignment to three main groups 

and one outlier group was done manually. The number and frequency (in brackets) are given for each 

cluster and DAA group. Out-groups are specified at the table bottom. Significant enrichments (p < 0.05), 

tested with Fisher’s exact test, for each cluster and DAA group are in bold. Samples with only 1 replicate 

were removed and are depicted in italic. Grey colored cells represent potential developmental groups 

manually assigned according to the results obtained from enrichments analyses in conjunction with the 

underlying sample frequency. 

 

Species S. lycopersicum `M82´ S. lycopersicum `MM´ S. pennellii 

Cluster I II III I II III I (a+b) II III 

Size 9 15 18 6 16 19 17 14 16 

28 DAA  1 (100)  5 (83.3) 1 (16.7)  5 (100)   

35 DAA 7 (77.8) 2 (22.2)  1 (16.7) 4 (66.7) 1 (16.7) 3 (60) 2 (40)  

42 DAA 1 (11.1) 3 (33.3) 5 (55.6)  6 (100)  5 (62.5) 3 (37.5)  

49 DAA 1 (14.3) 6 (85.7)   4 (66.7) 2 (33.3) 2 (33.3) 2 (33.3) 2 (33.3) 

56 DAA  3 (33.3) 6 (66.7)   6 (100) 1 (10) 6 (60) 3 (30) 

63 DAA   6 (75)  1 (16.7) 4 (66.7) 1 (12.5) 1 (12.5) 5 (62.5) 

70 DAA   1 (100)   6 (100)   6 (85.7) 

Out 

groups. 
63J, 63G 63A 63D, 70C 
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Table II. Overview of the number of connections (degree centrality) found for significant positive and 

negative correlations in S. lycopersicum cultivars and S. pennellii. The analyses were carried out 

separately in each genotype, using the shrunk data set with the same 22 enzymes in each genotype. To 

compute the degree centrality (i.e. the number of connections for each enzyme) the full correlation 

matrix (w/o the diagonal, i.e. each enzyme against itself) was converted into a network by considering 

only those associations that are statistical significant at padj < 0.05. An overlap matrix of all three 

genotypes can be found as Fig. 5; a Venn diagram summarizing the shared correlations is depicted as Fig. 

4.   

Enzyme Pathway S. lycopersicum `M82´ S. lycopersicum `MM´  S. pennellii 

  pos. neg. pos. neg. pos. neg. 

AlaAT AAM 12 0 18 1 15 0 

AspAT AAM 15 1 17 1 8 0 

NAD-GlDH AAM 2 5 17 0 9 0 

ShkDH AAM 2 4 20 0 13 0 

Aldolase GGP 17 0 16 0 7 0 

G6PDH GGP 13 0 20 1 9 0 

ATP-PFK GGP 16 1 19 0 8 0 

NAD-GAPDH GGP 18 0 18 1 10 1 

PGK GGP 16 1 14 0 10 0 

PK GGP 12 0 20 0 4 0 

PPi-PFK GGP 18 1 19 1 12 1 

PGI GGP|SSM 16 0 17 0 5 0 

PGM GGP|SSM 16 1 18 0 9 3 

SuSy GGP|SSM 13 1 19 1 6 0 

AGP SSM 15 0 20 1 9 2 

FruK SSM 10 0 18 0 6 1 

Invertase SSM 0 2 1 8 2 1 

SPS SSM 16 0 17 0 6 1 

UGP SSM 6 0 19 0 17 0 

Aconitase TCA 16 1 8 0 10 0 

NAD-MDH TCA 18 2 18 1 11 0 

NADP-IcDH TCA 15 0 11 0 16 0 

 total (+/-) 282 20 364 16 202 10 

 total 302 380 212 
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Table III. Correlations between 31 transcripts for structural genes and 25 enzyme activities in fruit 

development in S. lycopersicum `MM´. The name of the transcripts correspond to the identifying spot 

on the TOM01 chip, the full description is available in SI Table S8 as well as the genes presenting no 

correlation with any of the enzyme activities. Sectors corresponding to parameter pairs in which the 

transcript is annotated as encoding the enzyme are highlighted in grey. The grey boxes indicate where a 

transcript correlates with the activity of the enzyme that it encodes.The table also lists other enzyme 

activities with which transcripts correlate. The Table shows the p-values. Color code: for negative 

correlation: red if p < -0.01 and orange if -0.01 < p < -0.05, for positive correlation: light blue if 0.01 < p < 

0.05 and dark blue if p < 0.01. The full data matrix is provided in SI Table S8. 
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1-1-8.3.8.2 -0.79 -0.49 -0.03 -0.65 -0.37 -0.16 -0.79 -0.09 -0.71 -0.08 -0.28 -0.10 -0.61 -0.16 -0.05 -0.20 -0.59 0.53 0.49 -0.54 -0.10 0.72 -0.35 -0.29 -0.93 

1-1-2.4.11.13 -0.19 0.49 0.43 0.36 0.16 0.82 0.93 0.48 -0.92 0.09 -0.86 0.02 0.77 0.33 0.22 -0.95 -0.38 -0.33 -0.29 0.75 0.22 -0.39 -0.94 0.93 -0.23 

1-1-3.3.13.8 -0.58 0.12 0.42 0.23 0.10 0.84 -0.97 0.41 -0.91 0.10 0.57 0.01 0.99 0.24 0.16 0.59 -0.76 -0.47 -0.81 0.55 0.16 -0.67 0.72 0.42 -0.49 

1-1-1.1.7.16 -0.52 -0.20 -0.03 -0.15 -0.09 -0.21 -0.33 -0.04 -0.31 -0.06 -0.23 -0.06 -0.27 -0.04 -0.01 -0.10 -0.38 0.47 0.38 0.56 -0.11 -0.41 -0.22 -0.14 -0.56 

1-1-3.2.4.10 0.12 0.10 0.04 0.23 0.16 0.10 0.33 0.07 0.18 0.04 0.10 0.05 0.80 0.07 0.13 0.06 0.09 -0.61 0.49 0.45 0.00 0.53 0.08 0.04 0.14 

1-1-6.4.20.20 0.63 0.29 0.01 0.61 0.11 0.01 0.16 0.03 0.22 0.04 0.23 0.17 0.06 0.04 0.01 0.09 0.33 -0.65 -0.12 0.93 0.06 0.53 0.20 0.13 0.67 

1-1-7.2.2.6 0.86 -0.20 -0.17 -0.13 -0.04 -0.23 -0.33 -0.18 -0.36 -0.06 -0.56 -0.10 -0.09 -0.13 -0.18 -0.38 -0.90 0.92 0.11 -0.77 -0.18 0.81 -0.45 -0.61 0.69 

1-1-3.1.20.1 0.23 -0.26 -0.03 -0.41 -0.21 -0.68 -0.43 -0.06 -0.40 -0.22 -0.41 -0.62 -0.32 -0.66 -0.04 0.95 -0.56 -0.49 0.55 -0.44 -0.02 0.56 -0.85 0.82 -0.89 

1-1-3.4.16.6 0.81 -0.22 0.00 -0.31 -0.01 -0.02 -0.04 0.00 -0.03 0.00 -0.68 -0.01 -0.22 0.00 0.00 -0.02 -0.31 0.06 0.28 -1.00 0.00 -0.31 -0.27 -0.03 -0.48 

1-1-5.1.11.21 -0.81 -0.06 -0.78 -0.03 -0.07 -0.88 -0.88 -0.52 -0.58 -0.23 -0.14 -0.04 -0.56 -0.18 -0.18 -0.64 -0.33 -0.81 -0.72 0.69 -0.18 -0.49 -0.09 -0.18 -0.38 

1-1-7.1.8.9 -0.40 -0.20 -0.15 -0.34 -0.30 -0.01 -0.42 -0.16 -0.26 -0.25 -0.27 -0.30 -0.60 -0.17 -0.34 -0.23 -0.30 0.56 -0.32 -0.20 -0.10 -0.72 -0.17 -0.10 -0.43 

1-1-1.2.13.14 -0.88 0.32 0.06 0.53 0.06 0.11 0.25 0.10 0.26 0.03 0.31 0.03 0.14 0.03 0.00 0.20 0.31 -0.39 -0.26 -0.46 0.02 0.37 0.13 0.08 0.45 

1-1-7.3.4.18 -0.15 -0.75 0.18 -0.46 0.37 0.12 0.01 0.26 0.11 0.26 -0.30 0.81 0.10 0.34 0.23 0.47 0.94 -0.23 -0.02 -0.15 0.37 0.38 -0.73 0.77 0.98 

1-1-1.3.4.13 -0.30 -0.38 -0.84 -0.75 -0.92 -0.68 0.60 -0.75 0.89 -0.83 -0.25 -0.63 0.48 -0.70 -0.90 -0.59 -0.45 0.91 -0.06 -0.02 -0.47 0.95 -0.38 -0.22 -0.54 

1-1-4.2.12.10 0.49 -0.22 -0.01 -0.53 -0.18 -0.29 -0.34 -0.03 -0.28 -0.14 -0.18 -0.51 -0.20 -0.40 -0.01 -0.64 -0.26 -0.58 0.60 -0.42 -0.01 0.85 -0.42 -0.66 -0.53 

1-1-1.3.1.20 0.86 -0.77 0.04 -0.77 0.88 0.26 0.42 0.15 0.54 0.29 -0.60 0.56 0.97 0.43 0.28 0.18 -0.89 -0.08 -0.19 -0.95 0.51 0.91 -0.59 0.76 -0.68 

1-1-6.4.19.19 -0.74 0.41 0.30 0.62 0.22 0.46 -0.99 0.47 -0.90 0.12 0.27 0.05 0.35 0.24 0.05 0.78 0.91 -0.77 -0.35 -0.94 0.14 -0.76 0.27 0.44 -0.81 

1-1-3.2.9.19 0.91 0.18 0.02 0.42 0.01 0.02 0.00 0.01 0.00 0.01 0.72 0.17 0.06 0.01 0.04 0.02 0.11 -0.46 -0.20 -0.72 0.05 0.03 0.43 0.08 0.19 

1-1-8.4.6.9 0.60 0.30 0.08 0.48 0.08 0.01 0.15 0.11 0.09 0.06 0.58 0.43 0.05 0.13 0.23 0.18 0.32 1.00 -0.28 0.74 0.11 0.43 0.45 0.36 0.54 

1-1-6.4.11.11 -0.45 0.25 0.02 0.42 0.02 0.11 0.27 0.05 0.43 0.00 0.64 0.00 0.20 0.03 0.00 0.10 0.97 -0.21 -0.07 0.87 0.01 -1.00 0.51 0.26 -0.66 

1-1-3.3.11.20 -0.78 0.03 0.03 0.15 0.00 0.06 0.08 0.03 0.20 0.00 0.22 0.01 0.13 0.01 0.00 0.12 0.45 -0.52 -0.31 0.68 0.01 0.51 0.18 0.07 0.75 

1-1-5.4.11.11 0.59 -0.71 -0.08 -0.62 -0.13 -0.04 -0.13 -0.17 -0.21 -0.07 0.93 -0.34 -0.03 -0.17 -0.26 -0.40 -1.00 0.66 0.02 -0.78 -0.12 0.82 -0.71 -0.84 0.68 

1-1-6.4.11.16 -0.79 0.66 0.14 0.70 0.14 0.06 0.03 0.26 0.14 0.14 0.56 0.25 0.04 0.13 0.04 0.46 0.37 -0.73 -0.10 -0.22 0.05 0.37 0.17 0.26 0.44 

1-1-4.4.3.16 0.89 -0.12 0.00 -0.37 -0.08 -0.11 -0.22 -0.01 -0.15 -0.05 -0.08 -0.22 -0.15 -0.11 0.00 -0.23 -0.10 -0.82 0.59 -0.67 0.00 -0.63 -0.15 -0.18 -0.27 

1-1-4.3.6.2 -0.69 0.64 0.48 0.44 0.03 -0.49 -0.72 0.45 -0.68 0.22 -0.51 0.13 -0.08 0.46 0.87 0.31 -0.24 -0.49 -0.68 0.43 0.68 -0.20 -0.13 -0.42 -0.16 

1-1-6.3.4.13 0.31 0.55 -0.20 -0.90 -0.19 -0.93 -0.55 -0.48 -0.98 -0.02 0.03 -0.07 0.65 -0.33 -0.38 -0.67 0.18 0.02 0.16 0.98 -0.09 0.04 0.17 0.11 0.22 

1-1-8.2.11.11 -0.98 -0.07 -0.02 -0.23 -0.01 -0.02 -0.18 -0.03 -0.17 0.00 -0.32 -0.02 -0.12 -0.01 -0.03 -0.09 -0.44 0.45 0.39 -0.26 -0.01 -0.86 -0.19 -0.09 -0.85 

1-1-6.4.19.11 0.69 -0.08 -0.15 -0.33 -0.24 -0.94 -0.44 -0.15 -0.27 -0.60 -0.05 0.91 -0.30 -0.82 -0.05 0.88 -0.06 -0.07 -0.46 -0.70 -0.03 -0.53 -0.26 -0.65 -0.10 

1-1-4.1.20.9 -0.93 -0.74 -0.04 -0.95 -0.59 -0.18 -0.96 -0.15 0.96 -0.11 -0.84 -0.12 0.88 -0.26 -0.14 -0.26 0.74 0.11 0.52 -0.14 -0.13 0.42 -0.95 -0.48 0.42 

1-1-3.2.18.15 -0.49 0.86 -0.02 -0.89 -0.75 -0.11 -0.78 -0.11 -0.69 -0.21 -0.82 -0.31 -0.70 -0.26 -0.20 -0.13 -0.92 0.22 0.27 -0.66 -0.26 0.57 -0.68 -0.58 0.78 

1-1-7.1.4.17 -0.72 -0.04 -0.06 -0.20 -0.02 -0.10 -0.44 -0.05 -0.31 -0.02 -0.30 -0.02 -0.59 -0.02 -0.05 -0.08 -0.39 0.28 -0.82 -0.30 -0.01 -0.67 -0.24 -0.03 -0.64 
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Figure legends 

 

Figure 1. Growth characteristics of fruits harvested at different time points during 

development of the (A) red-fruited S. lycopersicum `M82´ and the (B) green-fruited S. 

pennellii. The days after anthesis (DAA) and flowering (DAF) are depicted. The phases and stages 

of fruit development of S. lycopersicum `M82´ are assigned as in (Gillaspy G. et al., 1993). Scatter 

and regression plots of the fruit fresh weight, measured in gram [g], and the fruit volume, 

calculated in cubic centimeters [cm
3
] of the (C) red-fruited S. lycopersicum `M82´ and the (D) 

green-fruited S. pennellii. The black solid lines represent the regression line of a linear fit 

according y=mx with the slope m. The red lines indicating the 95% confidence band, a measure 

of certainty. The colors and symbols used in each plot indicate the monitored or assigned days 

after anthesis (for details see text below): 28 = dark blue triangle (up), 35 = light blue triangle 

(down), 42 = light green diamond, 49 = yellow hex, 56 = orange square, 63 = light red circle, and 

70 = dark red circle, respectively. Boxplot graphs illustrating the changes in fruit volume during 

the development of the (E) red-fruited S. lycopersicum `M82´ and the (F) green-fruited S. 

pennellii .Flowers of S. lycopersicum `M82´ and S. pennellii from two independent experiments 

growing under greenhouse conditions were tagged and fruits were harvested at indicated time 

points after anthesis (DAA). Fruit height and diameter were measured to calculate the fruit 

volume in cubic centimeters (cm
3
). The number of samples used is indicated at the bottom of 

each graph. The median and the mean are indicated by solid and dashed lines in each box, 

respectively. To aid interpretation, the median and the mean values of each DAA are connected 

by a black solid and a grey dashed line, respectively. Outlier values are depicted by solid black 

circles. 

 

Figure 2. Overview of the enzyme activities mapped onto metabolic pathways in the red-

fruited S. lycopersicum `M82´ (red bars), S. lycopersicum `MM´ (yellow) and the green-fruited 

S. pennellii (blue bars). Enzyme activities (expressed as nmol . g FW
-1

 . min
-1

, cf. Tables S3-5) for 

the majority of the 28 determined enzymes are depicted as bar diagrams including standard 

error bars according to the DAA group, namely 35, 42, 49, 56, and 63 DAA (left to right). The 
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very early (28 DAA) and the very late (70 DAA) stages are not visualized and statistically assessed 

due to few measurements being available at these time points for S. lycopersicum `M82´. The 

growth and harvest of the cultivar `M82´ and S. pennellii were performed at the same season 

and time, whereas S. lycopersicum `MM´ was grown separately. The data including statistical 

assessments are available in the supplemental data (Tables S3-5). 

 

Figure 3. Principal component analysis of the shrunk dataset comprising 22 enzyme activities 

in all three genotypes. (A) Separation between the tomato cultivars and the wild relative for 

principal components 1 and 2. (B) contribution of enzymes for group separation. The genotypes 

depicted in graph (A) are color coded: red circle= S. lycopersicum `M82´, yellow square= S. 

lycopersicum `MM´, and blue diamond= S. pennellii, with color shades according to early (bright 

color with crossed shape), mid (medium color with dotted shape) and late (dark color) groups of 

fruit development as determined by clustering and described in Table I. The enzymes depicted 

in graph (B) are color-coded according their functional / pathway assignment: blue = amino acid 

metabolism, green = sucrose and starch metabolism (SSM), light red = glycolysis, dark red = 

glycolysis and SSM, and yellow = TCA cycle. 

 

Figure 4. Venn diagram of (padj < 0.05) (A) positive and (B) negative significant correlations 

found in a genotype specific dataset and their overlaps for 22 enzymes reliable measured in all 

three genotypes. The numbers are extracted from the lower triangle (i.e., enzyme correlations 

between A vs. B and B vs. A where counted just once), without the diagonal (enzyme against 

itself) of the symmetric correlation matrix (Fig. 5). The number of enzymes is 22, and the 

number of all possible correlations is 231. The Venn diagrams show the total number of positive 

or negative significant correlations for each genotype specific dataset. The total number of 

significant correlations is shown outside the Venn sectors, the number of number of unique 

correlations of each genotype is shown in italics in the genotype specific sector, and the number 

of shared significant correlations observed in two or all three datasets is depicted in italics in 

each of the overlaps.   

 



 44

Figure 5. Heat map of unique and overlapping significant pairwise enzyme activity 

correlations. The analysis is restricted to 22 enzymes for which complete datasets were 

available for all three genotypes, using a significance threshold of padj < 0.05. Enzymes that show 

a significant pairwise correlation in only one genotype are shaded grey, in both of the two 

cultivars are shaded red, between one cultivar and S. pennellii are shaded orange, and between 

all three genotypes are shaded yellow. The shading and the letter code for the significant pair-

wise correlation are depicted in the key within the heat map graph. The matrix diagonal (i.e. 

correlations of enzymes between themselves) and non-significant correlations are shaded dark 

grey. For counting the overlap among genotypes, only the half-matrix without the diagonal was 

considered (cf. Fig. 4), whereas the full symmetric correlation matrix is depicted here. 

 

Figure 6. Heat map of the correlation matrix between enzymes and metabolites. The plot 

summarises the Pearson correlation coefficients between enzyme activities (Supplemental Table 

S4) and metabolites (Carrari et al., 2006) in S. lycopersicum `MM´, measured in the samples from 

the same material. The parameters are grouped with enzyme activities on the left/upper section 

and metabolites in the right/lower section. Sectors corresponding to enzyme-enzyme, 

metabolite-metabolite and enzyme-metabolite pairs are indicated. Color code: for negative 

correlation: red if p < -0.01 and orange if -0.01 < p < -0.05, for positive correlation: light blue if 

0.01 < p < 0.05 and dark blue if p < 0.01. The full data set is given in Supplemental Table S7. 

 

 



 



Figure 1. Growth characteristics of fruits harvested at different time points during 

development of the (A) red-fruited S. lycopersicum `M82´ and the (B) green-fruited S. 

pennellii. The days after anthesis (DAA) and flowering (DAF) are depicted. The phases and 

stages of fruit development of S. lycopersicum `M82´ are assigned as in (Gillaspy G. et al., 1993). 
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green-fruited S. pennellii. The black solid lines represent the regression line of a linear fit 

according y=mx with the slope m. The red lines indicating the 95% confidence band, a measure 

of certainty. The colors and symbols used in each plot indicate the monitored or assigned days 

after anthesis (for details see text below): 28 = dark blue triangle (up), 35 = light blue triangle 

(down), 42 = light green diamond, 49 = yellow hex, 56 = orange square, 63 = light red circle, and 

70 = dark red circle, respectively. Boxplot graphs illustrating the changes in fruit volume during 

the development of the (E) red-fruited S. lycopersicum `M82´ and the (F) green-fruited S. 

pennellii .Flowers of S. lycopersicum `M82´ and S. pennellii from two independent experiments 

growing under greenhouse conditions were tagged and fruits were harvested at indicated time 

points after anthesis (DAA). Fruit height and diameter were measured to calculate the fruit 

volume in cubic centimeters (cm3). The number of samples used is indicated at the bottom of 

each graph. The median and the mean are indicated by solid and dashed lines in each box, 

respectively. To aid interpretation, the median and the mean values of each DAA are connected 

by a black solid and a grey dashed line, respectively. Outlier values are depicted by solid black 

circles. 



 

Figure 2. Overview of the enzyme activities mapped onto metabolic pathways in the red-

fruited S. lycopersicum `M82´ (red bars), S. lycopersicum `MM´ (yellow) and the green-

fruited S. pennellii (blue bars). Enzyme activities (expressed as nmol . g FW-1 . min-1, cf. Tables 

S3-5) for the majority of the 28 determined enzymes are depicted as bar diagrams including 

standard error bars according to the DAA group, namely 35, 42, 49, 56, and 63 DAA (left to 

right). The very early (28 DAA) and the very late (70 DAA) stages are not visualized and 

statistically assessed due to few measurements being available at these time points for S. 

lycopersicum `M82´. The growth and harvest of the cultivar `M82´ and S. pennellii were 

performed at the same season and time, whereas S. lycopersicum `MM´ was grown separately. 

The data including statistical assessments are available in the supplemental data (Tables S3-5). 
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Figure 3. Principal component analyses of the shrunk dataset comprising 22 enzyme 

activities in all three genotypes. (A) Separation between the tomato cultivars and the wild 

relative for principal components 1 and 2. (B) contribution of enzymes for group separation. The 

genotypes depicted in graph (A) are color coded: red circle= S. lycopersicum `M82´, yellow 

square= S. lycopersicum `MM´, and blue diamond= S. pennellii, with color shades according to 

early (bright color with crossed shape), mid (medium color with dotted shape) and late (dark 

color) groups of fruit development as determined by clustering and described in Table I. The 

enzymes depicted in graph (B) are color-coded according their functional / pathway assignment: 

blue = amino acid metabolism, green = sucrose and starch metabolism (SSM), light red = 

glycolysis, dark red = glycolysis and SSM, and yellow = TCA cycle. 



 

Figure 4. Venn diagram of (padj < 0.05) (A) positive and (B) negative significant correlations found in a 

genotype specific dataset and their overlaps for 22 enzymes reliable measured in all three genotypes. 

The numbers are extracted from the lower triangle (i.e., enzyme correlations between A vs. B and B vs. A 

where counted just once), without the diagonal (enzyme against itself) of the symmetric correlation 

matrix (Fig. 5). The number of enzymes is 22, and the number of all possible correlations is 231. The 

Venn diagrams show the total number of positive or negative significant correlations for each genotype 

specific dataset. The total number of significant correlations is shown outside the Venn sectors, the 

number of number of unique correlations of each genotype is shown in italics in the genotype specific 

sector, and the number of shared significant correlations observed in two or all three datasets is 

depicted in italics in each of the overlaps.   
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correlations. The analysis is restricted to 22 enzymes for which complete datasets were available 

for all three genotypes, using a significance threshold of padj < 0.05. Enzymes that show a 

significant pairwise correlation in only one genotype are shaded grey, in both of the two cultivars 

are shaded red, between one cultivar and S. pennellii are shaded orange, and between all three 

genotypes are shaded yellow. The shading and the letter code for the significant pair-wise 

correlation are depicted in the key within the heat map graph. The matrix diagonal (i.e. 

correlations of enzymes between themselves) and non-significant correlations are shaded dark 

grey. For counting the overlap among genotypes, only the half-matrix without the diagonal was 

considered (cf. Fig. 4), whereas the full symmetric correlation matrix is depicted here. 
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Figure 6. Heat map of the correlation matrix between enzymes and metabolites. The plot 

summarises the Pearson correlation coefficients between enzyme activities (Supplemental Table 

S4) and metabolites (Carrari et al., 2006) in S. lycopersicum `MM´, measured in the samples from 

the same material. The parameters are grouped with enzyme activities on the left/upper section 

and metabolites in the right/lower section. Sectors corresponding to enzyme-enzyme, metabolite-

metabolite and enzyme-metabolite pairs are indicated. Color code: for negative correlation: red if 

p < -0.01 and orange if -0.01 < p < -0.05, for positive correlation: light blue if 0.01 < p < 0.05 and 

dark blue if p < 0.01. The full data set is given in Supplemental Table S7. 


