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SUMMARY

Binary complementary pairs of sequences, which are available for certain even length values (L= 2n · 10m · 26p),
are very interesting for applications with high noise levels and/or highly attenuated signals. To extend the range
of useful lengths, some authors have defined ternary complementary pairs of sequences. These sequences have
been approached from a theoretical perspective, but further research should be conducted regarding the archi-
tectures to process them. This letter describes algorithms for generating and performing the correlation of these
sequences using a minimum amount of calculations. These algorithms allow to work with sequences of length
3 · 2n, making it possible to attain a wider range of lengths, and, as a consequence, a wider range of noise im-
munity in some applications. The proposed approach uses a particular delay arrangement that minimizes the
memory requirements in hardware applications. The procedure described could also be used in ternary comple-
mentary pairs generated from primitives of length different from 3. Copyright © 2014 JohnWiley & Sons, Ltd.
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1. INTRODUCTION

Binary complementary pairs of sequences, also known as Golay sequences [1], have been widely used in
the last two decades in applications where highly attenuated signals and/or signals immersed in noise have
to be identified. Some examples of these applications are ground-penetrating radars [2], ultrasonic ranging
systems [3], and safety sensors for transportation systems [4]. The sum of the autocorrelation functions of
these sequences produces a Kronecker delta of amplitude 2L (L being the sequences’ length), which is
easily identifiable under low signal-to-noise ratio (SNR) conditions. After the correlation process, the
SNR of the signal is improved by a

ffiffiffiffiffiffi
2L

p
ratio with respect to the original signal [5]. In this manner,

noise immunity level can be incremented using a longer sequence.
Binary complementary pairs of sequences (BCPS) are limited to lengths L= 2n · 10m · 26p, where n,

m and p are natural numbers [6]. Despite the fact that many lengths are possible, lengths multiple of
odd numbers (except 5 and 13) cannot be obtained. To do so, ternary complementary pairs of
sequences (TCPS) could be used [7, 8]. TCPS are composed of elements �1, 0, and +1; and the
sum of their autocorrelations also provides a Kronecker delta, but of amplitude 2L-C, where C is the
number of zero elements. All mathematical properties of the complementary pairs, except for
Kronecker delta amplitude, remain unchanged regardless of the type of elements (binary or ternary).
Even though the correlation delta amplitude is lower due to the presence of zero elements in one or
both sequences, this zero padding is effective to reduce the inter-pulse interference in applications
like Ultra WideBand [10], as it was demonstrated in the work by Cho et al. [9].
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If the matter is analysed from a practical viewpoint, there are no algorithms able to generate and
perform TCPS correlations in an efficient manner. Di Wu et al. [11] proposed two different approaches
for constructing mutually orthogonal complementary sets of ternary sequences, yet the author did not
provide a generation or correlation algorithm for ternary pairs. Efficient algorithms for BCPS have been
developed by different authors, in order to make the generation and correlation processes with a
reduced number of calculations. The BCPS efficient generator proposed by Budisin [12] is a recursive
algorithm that allows to generate any pair of sequences of length L= 2n, using different permutations of
delays. With regard to correlation, a recursive architecture called Efficient Golay Correlator (EGC) was
proposed by Budisin [13] and Popovic [14] for different applications. Later on, two optimized
correlator algorithms were proposed by the authors of this letter. One of them is the Optimized Golay
Correlator (OGC) [15], which improves the Budisin/Popovic’s algorithm; the other is the algorithm
called O2GC [16], which performs the simultaneous correlation of two uncorrelated BCPS
(‘uncorrelated’ means that the sum of cross-correlation functions is zero [17]) with a considerable
reduction of operations if compared to the straightforward correlation and the other efficient approaches.

This letter proposes algorithms for an efficient generation and correlation of TCPS of length
L= 3 · 2n using the Budisin approach and the OGC concept, respectively. Additionally, in the case of
the correlation process, a TCPS correlator which can process two mutually uncorrelated TCPS on a
simultaneous basis with a single architecture is developed, with notorious calculations reduction.
2. BINARY COMPLEMENTARY PAIRS OF SEQUENCES GENERATION

The BCPS generation process is based on primitive sets, also called kernels, which are the smallest size
sets that fulfil the conditions to be complementary sets. Based on the Budisin approach [12] with the
delays ordered in an increasing way, a BCPS of length L= 2n can be obtained with a recursive
concatenation of sequences:
(1)
where H2 is the Hadamard matrix of order 2, W2,n is the seed matrix with coefficients wn = ±1, D2,n is
the delay matrix, and Sn is the vector of sequences, respectively. Despite the fact that delays
permutation, as proposed in [12], allows to generate different types of BCPS, the use of delays
ordered in an increasing manner is more convenient to optimize hardware applications. In this way,
delays are arranged in a decreasing order in the correlation process, which allows to reduce the
amount of memory bits in the implementation.

The iteration process starts (n= 1, S0 ¼
1

1

� �
) with one of the only two existing binary primitives,

which can be obtained by using a different seed coefficient:
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S2;1

" #
¼

1 1

1 �1

" #
�

1 0

0 z�1

" #
�

S1;0

S2;0

" #
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S1;1

S2;1

" #
¼

1 �1

1 1

" #
�

1 0

0 z�1

" #
�

S1;0

S2;0

" # (2)

The successive iterations of algorithm (1) produce larger sequences, all of them generated from
these primitives (2). It is worth noting that the sum of the cross-correlation functions between these
primitives is null, so it is said that they are mutually uncorrelated [17]. In this manner, given a
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BCPS of any length L≥ 2, there is another pair of the same length, which is uncorrelated to the first
one, according to the seed coefficient of the first iteration (n= 1).
3. EXTENSION TO TERNARY COMPLEMENTARY PAIRS OF SEQUENCES

Based on the BCPS, an analogy with TCPS can be drawn. As stated in the work by Craigen et al [8],
TCPS are available for a wide range of primitives. Yet this letter analyses the particular case of
primitives of length 3. According to Di Wu et al. [11], there are two mutually uncorrelated TCPS
primitives of length L= 3:

Sα
1;1

S α
2;1

" #
¼ 1 1 �1

1 0 1

� �
and

S β
1;1

S β
2;1

" #
¼ 1 0 1

1 �1 �1

� �
(3)

To obtain TCPS of length L≥ 3, the same approach as that of BCPS can be applied, that is, a
recursive concatenation algorithm (1). In this case, the primitives are different in length with regard

to the binary case (2), so every delay element of D2,n is a multiple of 3:
1 0

0 z�3�2n�2

� �
. The scheme

of the complete generator for N iterations is shown in Figure 1.
Once the delays have been defined, the first algorithm iteration should be synthesized according to

Eqn (3). Hence, it is necessary to include a generation seed of value ±1, in order to generate two
uncorrelated primitives with the same architecture. Transforming (3) to the z-domain, the primitives
are as follows:
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Based on the mathematical decomposition of [18], both primitives can be synthesized, using the
seed w1 as a parameter, as follows:

S1;1

S2;1

� �
¼ 1 1

1 �1

� �
� 1 0

0 z�1

� �� �
� 1 0:5

0:5 �1

� �
� 1 0

0 w1

� �
� 1 0

0 z�1

� �� �
�S0 (5)

From (5), the primitive Sα is obtained with w1 = 1 and the primitive Sβ with w1 =�1. The
architecture that implements the algorithm described in Eqn. (5) is displayed in Figure 2:
Figure 1. Modular ternary complementary pairs of sequences (TCPS) generation architecture based on (1)
with delays multiple of 3.
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Figure 2. First stage (n= 1) of the ternary complementary pairs of sequences (TCPS) generation architecture
(Figure 1).
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Figure 3 illustrates a time plot of the signals at the output of the different stages of a TCPS
generator, using w1 = 1 and n = 3. Note that TCPS primitives are generated in the first iteration
(top), and, in the following two iterations, the length of the pair is incremented to L = 6 (centre)
and L = 12 (bottom).
4. TERNARY COMPLEMENTARY PAIRS OF SEQUENCES CORRELATION

Ternary complementary pairs of sequences correlation can be addressed using a similar approach to
that used in BCPS. Taking into account that BCPS are processed by means of the sum of two
correlations, it would be logical to use two straightforward correlators. However, when high values
of L have to be used, the number of calculations increases considerably. To avoid the
implementation of straightforward correlations and enhance the use of resources in BCPS
applications, some efficient correlation architectures have been developed, such as EGC [14] and
OGC [15]. Particularly, the OGC approach relies on an inverse generation process, formulated as a
recursive algorithm of N stages, which can be employed to obtain the sum of the autocorrelations
with substantial calculation reduction.

In the case of TCPS, the OGC approach is valid for all the iterations, excluding the last one (n=1), because
the first stage of the generator is the only different one. So, for the first N-1 stages, the correlation algorithm is

(6)
Figure 3. Generation process for ternary complementary pairs of sequences (TCPS) of lengths 3, 6 and 12.
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Cn represents the partial results of the correlation process, where the correlation is obtained at the
output C0. Note that the delay matrix, D’2,n, is modified with respect to that used in the generation
(1), and that the delays are also multiples of 3. Figure 4 represents the architecture corresponding to
this correlation algorithm.

To complete the process, the penultimate output (CS1,1, CS2,1) should be correlated with the
corresponding primitive. To complete this step efficiently, it is convenient to start by formulating the
sum of the straightforward correlations:

Y k½ � ¼
XL
l¼1

S1;1 l½ � � CS1;1 k þ l½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CS1;0

þ
XL
l¼1

S2;1 l½ � � CS2;1 k þ l½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CS2;0

(7)

Taking into account that the primitive length is L= 3, the sum of the autocorrelations for the seed
w1 = 1 is

Y k½ � ¼ CS1;1 k½ � þ CS1;1 k þ 1½ � � CS1;1 k þ 2½ �� 	þ CS2;1 k½ � þ CS2;1 k þ 2½ �� 	
(8)

Transforming into z-domain:

Y zð Þ ¼ CS1;1 þ CS1;1z
1 � CS1;1z

2
� 	þ CS2;1 þ CS2;1z

2
� 	

(9)

The equation is reformulated in negative powers of z, in order to obtain a computationally feasible
equation represented as time delays:

Y zð Þ ¼ CS1;1 �1þ z�1 þ z�2
� 	þ CS2;1 1þ z�2

� 	
(10)

A similar reasoning can be applied to the other generation seed. Then, the sum of the correlations of
the last stage is performed with respect to the value of the generation seed, depending on its sign:

w1 ¼ þ1→Y α zð Þ ¼ �CS1;1 þ CS1;1z�1 þ CS1;1z�2
� 	þ CS2;1 þ CS2;1z�2

� 	
w1 ¼ �1→Y β zð Þ ¼ CS1;1 þ CS1;1z�2

� 	þ �CS2;1 � CS2;1z�1 þ CS2;1z�2
� 	 (11)

Ordering the terms

Y α zð Þ ¼ �CS1;1 þ CS2;1
� 	þ CS1;1z�1 þ CS1;1 þ CS2;1

� 	
z�2

Y β zð Þ ¼ CS1;1 � CS2;1
� 	� CS2;1z�1 þ CS1;1 þ CS2;1

� 	
z�2

(12)

Note that both sums of correlations (12) between the outputs of the penultimate iteration (n = 2) and
the TCPS primitives (3) are calculated with the same terms, but with some different signs, which are in
Figure 4. Modular correlation architecture based on (6).
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agreement with seed w1. In order to make a design in accordance with the generation, Eqn (12) is
reformulated using a seed coefficient to discriminate between the two primitives:

Y ¼ CS2;1 � CS1;1
� 	

w1 � 1� w1ð Þ
2

CS2;1z
�1 þ 1þ w1ð Þ

2
CS1;1z

�1 þ CS1;1 þ CS2;1
� 	

z�2 (13)

The architecture that implements (13) is shown in Figure 5.
An easy way to understand the correlation process using the architecture in Figures 4 and 5 is by

means of a time plot (Figure 6). A pair of ternary sequences of length L= 12 (top) is processed, and
pairs of shorter length and more amplitude are obtained. Note that, at the output of the penultimate
stage (CS1,1; CS2,1), the original primitives of the TCPS are recovered, but of amplitude ±4. Finally,
a Kronecker delta of amplitude 2L-C= 20 is obtained at the output Y[k], delayed L samples.
5. TERNARY COMPLEMENTARY PAIRS OF SEQUENCES SIMULTANEOUS
CORRELATION

In the BCPS correlation architecture, the last stage is reformulated using another architecture derived
from OGC, known as O2GC [16], which performs the simultaneous correlation of two uncorrelated
pairs. In the case of TCPS, the architecture that performs Eqn (13) can be optimized using a similar
approach to that of O2GC. Considering that the seed coefficient only assumes values ±1, an efficient
architecture that simultaneously performs the correlation of two uncorrelated TCPS is derived (Fig. 7).

With reference to the efficiency of the proposed correlators, the architecture based on Eqns (6) and
(13) represents notorious reduction with respect to the straightforward correlation approach. To
Figure 5. Last stage (n= 1) of the ternary complementary pairs of sequences (TCPS) correlator (Figure 4)
with the seed coefficient included.

Figure 6. Correlation process for a ternary complementary pairs of sequences (TCPS) of length L = 12.
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Figure 7. Last iteration (n= 1) of the ternary complementary pairs of sequences (TCPS) correlator (Figure 4),
which performs the correlation of uncorrelated pairs in a simultaneous way.

Table I. Comparison between the straightforward approach and the
algorithms proposed.

Delays Additions/subtractions

Straightforward correlation 4 · (L� 1) 4 · L+ 1
Correlation based on Figures 4 and 5 2 · (L� 1) 2 · log2(L) + 5
Correlation based on Figures 4 and 7 L� 1 2 · log2(L) + 6

GENERATION AND CORRELATION OF COMPLEMENTARY PAIRS OF TERNARY SEQUENCES
correlate with respect to two uncorrelated TCPS, the proposed correlator employs a single architecture
with L�1 delays and 2 · log2(L) + 6 adders/subtractions (the last 6 adders/subtractions are the ones
corresponding to the architecture shown in Figure 7). The classical approach, on the other hand,
involves four straightforward correlations, two for one of the TCPS and two for the other one, with
4 · (L�1) delays and 4 · L+ 1 adders/subtractions. Considering that complementary sequences
provide greater immunity to noise with longer lengths, operations reduction is very important.
Table I compares the amounts of delays and additions/subtractions necessary to process two
uncorrelated TCPS with the classical straightforward approach, and the two algorithms proposed in
this letter.
6. CONCLUSIONS

This letter puts forward algorithms to generate and correlate TCPS in an efficient way. The proposed
architectures allow to process TCPS of kernel 3 by using recursive algorithms that use less calculations
than the classical straightforward approach does. Moreover, a correlator performing a simultaneous
correlation of the sequences with respect to the two uncorrelated primitive sets is also developed.
This contribution constitutes a significant step towards the practical application of these sequences
and extends the application field of complementary sequences from the well-known binary cases to
the less used ternary sequences. The proposed algorithms can be extrapolated to different TCPS
primitive lengths, allowing to obtain efficient generation/correlation architectures for any TCPS.
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