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Abstract. The present study provides a quantitative and qualitative analysis on the dentition of Mustelus schmitti, and
estimates the tooth-replacement rate. In total, 47 males and 56 females of M. schmitti were collected on scientific trawl
surveys conducted by the National Institute of Fisheries Research and Development (INIDEP) in Argentina during the
months ofNovember 2007, November 2008 andDecember 2008. The dental laminas were extracted from the jaw cartilage

and attached to onionskin paper for dehydration treatment, maintaining the original jaw position. Tooth replacement rate
was estimated following established methods used for fossil sharks, instead of the established technique of clipping teeth,
based on the premise that tooth length within each row decreases from the lingual to the labial side of the jaw as a

consequence of wear. The length difference between consecutive teeth in four representative rows should be proportional
to the tooth-replacement rate.Mustelus schmitti exhibited homodont dentition, where teethwere similar in shape or design,
and are arranged in a semi-pavement-like dentition. The dental formula was 47-63/50-63 for juveniles and 50-77/50-69 for

adult specimens. The estimated mean replacement rate was 4 days series�1.
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Introduction

The teeth of chondrichthyans are polyphyodont, which means
that they are continuously replaced (Motta 2004; Cousseau
2010). The newly formed teeth move forward, as in a conveyor

belt, organised in rows and series on the palatoquadrate and
Meckel’s cartilage (Motta 2004). A row is a single line of teeth
transverse to the longitudinal jaw axis that includes both func-

tional teeth and their replacements. Series is used for a line of
teeth along the jaws that is parallel to the jaw axis and includes
teeth from all rows (Compagno 2003; Motta 2004). The

replacement rates in sharks vary from 2 to 70 days series�1, and
are affected by age of the animal, diet, season and water tem-
perature (Reif et al. 1978; Luer et al. 1990; Overstrom 1991).
The evolutionary reason for this process may be to maintain

sharpness and cutting ability, and, as in other poikilothermswith
indeterminate growth, allow the replacement of smaller teeth by
larger ones because such teeth cannot grow once they have

erupted (Moss 1972; Motta 1984; Whitenack et al. 2011). Most
studies have investigated replacement rates on extant sharks by
clipping teeth (Reif et al. 1978; Luer et al. 1990; Overstrom

1991), whereas studies of fossil sharks have used another
method based on the reduction in tooth length within each row,

from the lingual to the labial side of the jaw as a consequence of
wear (Botella et al. 2009).

Diverse branches of ichthyology use teeth as their object of
study. The cartilaginous skeletons of chondrichthyans are not

easily fossilised, so teeth are more often found than skeletons in
the fossil record (Compagno 2003). The importance that teeth
have as a means of distinguishing and classifying elasmo-

branchs has long been known to phylogenists, paleontologists,
comparative anatomists and taxonomists (Long 1994; Purdy and
Francis 2007; Adnet and Cappetta 2008; Straube et al. 2008;

Maisey 2012). There are multiple shark descriptions concerning
the systematic significance of tooth morphology (Bigelow and
Schroeder 1953; Compagno 1984a, 1984b, 2001; Duhamel and
Compagno 1988; Grace 2001; Meneses and Paesch 2003;

Lamilla and Bustamante 2005; Figueroa 2011), and even taxo-
nomic dental keys that allow diagnoses of different shark
species (Sáez and Pequeño 2010). There have been more studies

on the dentition on batoids than sharks (Herman et al. 1994,
1995, 1996; Kajiura and Tricas 1996; Sáez and Lamilla 1997,
2004, 2012; Braccini and Chiaramonte 2002; Rivera 2009;

Shimabukuro 2009; Delpiani et al. 2012). However, there have
been excellent studies on the dentition of a few species in
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Argentina, including the narrowmouthed catshark, Schroeder-

ichthys bivius (Gosztonyi 1973), and the sand tiger shark,
Carcharias taurus (Lucifora et al. 2001, 2003).

The genusMustelus is the most speciose genus of Triakidae,

comprising at least 31 species (Nelson 2006; Heemstra 1997,
Pérez Jiménez et al. 2005;White and Last 2006, White and Last
2008; Cubelio et al. 2011). The narrownose smooth-hound
shark, Mustelus schmitti, inhabits coastal waters from southern

Florianópolis (278S,Brazil) toRı́aDeseado (478450S,Argentina).
It is found from the shallow waters down to 120-m depth
(Cousseau and Perrotta 2004). In Brazil, the depth range extends

down to 195m (Heemstra 1997). Its diet consists mostly of crabs
(Capitoli et al. 1995; Chiaramonte and Pettovello 2000; Molina
and López Cazorla 2011), but polychaetes and fish could be the

most important prey in some regions as the total length of the
predator shifts (Belleggia et al. 2012). The specific goals of
the present paper are (1) to provide a quantitative and qualitative
analysis on the dentition of M. schmitti and (2) to estimate the

tooth-replacement rate.

Materials and methods

In total, 103 specimens ofM. schmitti (47males and 56 females)
were collected on scientific trawl surveys conducted by The
National Institute of Fisheries Research and Development

(INIDEP) in Argentina, during the months of November 2007,
November 2008 and December 2008. Specimens were mea-
sured (total length (TL), mm) and sexed. Maturity stage

(juveniles or adults) was determined according to the degree of

clasper calcification, development of testes and reproductive
ducts inmales, and on the condition of uteri, oviducal glands and
ovarian follicles in females (Stehmann 2002). The jaws were

excised, frozen and returned to the laboratory for subsequent
analysis. Once in the laboratory, dental laminas were extracted
from the jaw cartilage and attached to onionskin paper for
dehydration treatment, maintaining their original jaw position.

Quantitative analyses

Mustelus species have teeth arranged in rows on the palato-
quadrate and Meckel cartilages (Motta 2004), forming a semi-

pavement dentition for crushing prey (Compagno 2003). The
total number of tooth rows in each jaw was recorded (Fig. 1).
A useful tool in systematics is the dental formula, which is the
total number of rows in each jaw (maximum and minimum

scores in upper jaw/maximum and minimum scores in lower
jaw). The number of rows was analysed with Mann–Whitney
U test to search significant differences between upper and lower

jaws. Moreover, the relationship between tooth rows and TL of
M. schmitti was evaluated by fitting quantile regression models
(Koenker and Bassett 1978; Cade and Noon 2003) at 50%

(simple linear regression model), 90% and 10% levels (most
extreme values in the dataset) with the quantreg R 2.15.3
package (Koenker 2007; R Core Development Team 2013).

The tooth measurements were carried out on four represen-
tative rows in each jaw, over the dental laminas previously
attached to onionskin paper (Fig. 1). The selected rows were

Example for estimating %ΔL:

(1.3�1.3)�(1.3�1.2)�(1.2�1.1)�(1.1�0.9)�(0.9�0.8)

%ΔL � 10%
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Fig. 1. Diagram illustrating upper and lower jaw of Mustelus schmitti, and the technical method of

count rows. The image shows measurements (width and length) taken from all the teeth located on the

symphysial, adsymphysial, adcommissural and commissural rows. An illustrative example for estimat-

ing size increment in length (%DL) is presented inside the box in the lower-right corner of the figure.
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defined as (Rivera 2009) (1) symphysial (row located at the
symphysis in the middle of the jaw), (2) adsymphysial (row

located at 10 rows from the symphysis), (3) adcommissural (row
located at 10 rows from the commissure) and (4) commissural
(row located at the commissure where two jaws are joined)

(Fig. 1). The tooth located closest to the lingual side of themouth
was named Tooth 1, and a correlative numeration (e.g. 2, 3) was
maintained up to the oldest labial tooth (Fig. 1). The width and

length of each tooth were measured in the four representative
rows in both lower and upper jaws, as in Sáez andLamilla (1997;
Fig. 1). The tooth measurements were carried out using a
magnifying glass equipped with an ocular micrometer to the

nearest 0.01mm. The mean length and width of the teeth were
compared among jaws, rows and groups by using a paired
Student’s t-test, to fully assess the significance of results.

Replacement rate

The tooth-replacement rate was estimated following the
technique established for fossil sharks (Botella et al. 2009),

instead of the established technique of clipping teeth, because
M. schmitti is hard to maintain in captivity. In aquariums, this
species exhibits erratic swimming behaviour and exhaustion, it

may be preyed or harassed by other species, and ultimately death
can result (J. Jañez, Temaiken Aquarium, pers. comm.). Thus,
the method used on fossil sharks (Botella et al. 2009) was

proposed for this species, and also for those species that are not
adapted to captivity (Dehart 2004), as an alternative approach to
the usual observations in living animals. Themethod is based on
the differences that exist between wear of the functional teeth

and wear of most recently formed teeth. The tooth length within
each row decreases from lingual to labial as a consequence of
wear. The length difference between consecutive teeth in each

four representative rows measured in M. schmitti should be
proportional to the tooth-replacement rate (Botella et al. 2009).
On the basis of this, the size difference in length (%DL) in
consecutive teeth in each selected row was estimated as

%DL¼
P ðLength toothij �Length toothiðjþ1ÞÞ=Length toothij

Nobs
;

where i is the row and j is the tooth position number. Moreover,
Botella et al. (2009) pointed out that size difference averages of
consecutive teeth plotted against mean tooth-replacement rates
(days series�1) for six different shark species exhibited a linear

relationship, with a high correlation coefficient (r2¼ 0.83;
Fig. 2, redrawn considering only extant sharks). The %DL for
these six species was obtained by Botella et al. (2009) by

measuring teeth, and plotted against their known replacement
rates available in the literature, which are based on tooth clip-
ping (Fig. 2). The %DL scores found in M. schmitti were

extrapolated in the regression line (Fig. 2), making the leap from
changes in tooth length to the replacement rates in days. In this
way, this regression analysis developed for fossil sharks was
applied to current sharks, instead of using the standard meth-

odology of clipping teeth to establish tooth-replacement rate. To
show variability surrounding %DL and replacement rates in
days, 95% confidence intervals of each mean were constructed

by resampling the observations 999 times. Bootstrap routinewas

carried out usingR 2.15.3 and library boot (RCoreDevelopment
Team 2013). Differences in the mean tooth-replacement rate
among maturity stages and jaws were determined using

Student’s t-test.

Qualitative analyses

Accurate tooth observations of their morphology are hampered

by poor visibility of attached teeth. Hence, teeth were removed
from the onionskin paper, then cleaned by immersing them in a
5% aqueous potassium hydroxide (KOH) solution, and heated

for 1 h. The isolated and cleaned teeth, and dental lamina, were
mounted onto 15-cm aluminium plug. They were gold-coated
in a Denton Vacuum Desk II gold-cathode sputter (Denton

Vacuum LLC, Moorestown, NJ, USA) and analysed using a
JSM-6460LV (Jeol, Tokyo, Japan) scanning electron micro-
scope (SEM) operating at 15 kV accelerating voltage. Digital
photographs were captured. A preliminary analysis indicated

that there were no differences in tooth shape among both sexes
and maturity stages. Therefore, qualitative information could be
polled. The tooth terminology used throughout the paper is that

proposed by Compagno (2003).

Results

Quantitative analyses

The lower jaw ofM. schmitti showed two more tooth rows than
did the upper jaw (Mann–Whitney U¼ 4011, P¼ 0.002;
Table 1). The total number of rows varied between upper and

lower jaws in both adult males and females (Mann–Whitney:
males, U¼ 534, P¼ 0.04; females, U¼ 1144.5, P¼ 0.005).
However, no significant differences were found between upper
and lower jaws from juveniles specimens (Mann–Whitney:

males, U¼ 187.5, P¼ 0.43; females, U¼ 116, P¼ 0.90;
Table 1). The tooth-row counts did not present differences
between sexes in either upper (Mann–Whitney: U¼ 1377.5,

P¼ 0.68) or lower (Mann–Whitney: U¼ 1494.5, P¼ 0.23) jaw
(Table 1). The dental formula ofM. schmittiwas 47-63/50-63 for
juveniles, and 50-77/50-69 for adult specimens.

The total number of rows in M. schmitti increased with
growth at minimum, medium and maximum values of row
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Fig. 2. Least-squares regression of tooth-replacement rates (days series�1)

against size difference in length in consecutive teeth (%DL). Figure was

redrawn and adapted from Botella et al. (2009), considering only extant

sharks.
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counts, in either upper (10% quantile regression slope: 0.011,
P¼ 0.03; 50% quantile regression slope: 0.01, P¼ 0.025; 90%

quantile regression slope: 0.02, P, 0.001) and lower (10%
quantile regression slope: 0.015, P¼ 0.02; 50% quantile regres-
sion slope: 0.014, P, 0.001; 95% quantile regression slope:

0.021, P, 0.001) jaws (Fig. 3).
The mean tooth length of all of the teeth from labial to

lingual, in both jaws, decreased from symphysial to commissural

row (Fig. 4a). The widest teeth were the adsymphysial, follow-
ing by symphysial, adcommissural and commissural, respec-
tively (Student’s t-test, P, 0.001 for each case; Fig. 4b). Upper
jaw showed longer teeth than did the lower one (Student’s

t-test: d.f.¼ 5833, t¼ 4.68, P, 0.001; Fig. 5a), whereas the
lower jaw presented wider teeth than did the upper one
(Student’s t-test: d.f.¼ 5806, t¼ 5.09, P, 0.001; Fig. 5b).

Replacement rate

The size increment in length in consecutive teeth (%DL)
ranged between 0.13 and 2.28, depending on row, sex and

maturity stage (Table 2). The mean extrapolated value of
tooth-replacement rate obtained for M. schmitti was 4 days
series�1 (Table 3). The replacement rate ranged between 2

and 3 days series�1 in commissural tooth and between 4 and
5 days series�1 in symphysial, adcommissural and commissural
tooth (Table 3). Finally, M. schmitti juveniles replaced their
teeth at a slower rate (mean � s.d., 4.523� 0.03 days series�1)

than did adults (3.982� 0.02 days series�1) and this difference
was significant (Student’s t-test: d.f.¼ 30290, t¼ 28.45,
P, 0.001). The upper jaw exhibited a replacement rate of

3.87� 0.02 days series�1, whereas lower jaw replaced teeth at
4.64� 0.03 days series�1 (Student’s t-test: d.f.¼ 30779,
t¼ 41.56, P, 0.001; Table 3).

Qualitative analyses

Mustelus schmitti possesses a semi-pavement-like dentition
(Fig. 6a). Teeth are similar is shape throughout its jaws, con-
firming the presence of homodont dentition. Teeth are divided

into the crown, entirely covered by shiny enameloid, and the
root that consists of porous dentine (Fig. 6b). The crown is short,
and the cusp is reduced only to a low point. A peg, an elongated

protuberance, extends from the lingual face of the crown just
above the root (Fig. 6c). The transverse groove divides the root

Table 1. Total number of specimens sampled (n), total length range

(TL), and range, mean and s.d. of tooth-row counts in both upper and

lower jaws in Mustelus schmitti by sex and maturity stage

Group n TL range

(mm)

Number of tooth rows

Upper jaw Lower jaw

Range Mean s.d. Range Mean s.d.

Female

Juvenile 15 360–568 47–63 55.13 3.68 52–63 55.67 2.94

Adult 41 612–1020 50–77 57.49 5.12 52–67 59.78 3.94

Male

Juvenile 18 359–560 49–62 54.28 3.51 50–60 55.11 2.86

Adult 29 562–881 50–63 57.24 3.85 52–69 59.21 4.22
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Fig. 3. Quantile regressions of tooth-row counts and total length of

Mustelus schmitti in (a) upper jaw and (b) lower jaw. Dotted, solid, and
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into mesial and distal lobes (Fig. 6b, c). It may extend over the
extreme rim of the root to form a transverse notch (Fig. 6b). The

central foramen communicates with the pulp cavity at the mid-
length of the groove (Fig. 6d).

Discussion

Mustelus schmitti exhibits homodont dentition, where teeth are
similar in shape or design, and arranged in a semi-pavement-like

dentition. The peg of each tooth extends under the basal ledge
of the next tooth in succession in the same row. This arrange-

ment, observed in many species of Mustelus and three species
of Triakis (particularly T. acutipinna), probably serves to inter-
lock the close-set teeth of the semi-pavement-like dentition

(Compagno 2003). The transverse groove of the root that divides
the attachment surface into mesial and distal lobes is common
also in Rajidae (Herman et al. 1994, 1995, 1996; Sáez and

Lamilla 1997, 2004; Rivera 2009; Shimabukuro 2009). These
considerations about the morphology of the crown and root
have significance for phylogenists, paleontologists, compara-
tive anatomists and taxonomists, so as to accurately identify

species on the basis of teeth (Long 1994; Purdy and Francis
2007). For instance, the teeth ofM. schmitti are morphologically
very similar to those ofM. vanderhoefti, known until the Eocene

(Adnet and Cappetta 2008).
The dental formula of M. schmitti was 47-63/50-63 for

juvenile and 50-77/50-69 for adult specimens. These results

are consistent with the average of the total number of tooth rows
for Triakidae (Compagno 2003). However, dental formula alone
is not useful for distinguishing the Mustelus species because of
high intraspecific variation (Rosa and Gadig 2010). Moreover,

tooth-row counts increased with total length of M. schmitti,
especially in the lower jaw, where adult specimens showed two
more tooth rows than in the lower one. In M. henlei, and

probably some other species with small and numerous teeth,
rows also increase in number with growth (Compagno 2003).

The reduction observed in tooth length from symphysis to

commissure inM. schmitti is common and should not be termed
monognathic heterodonty (Motta and Wilga 2001). Gradient
monognathic heterodonty, where teeth exhibit a gradual varia-

tion in size along series, is a general phenomenon in the
dentitions of sharks (Compagno 2003). Rajidae also showed
gradient monognathic heterodonty, and this has been proposed
as a feature to improve the ability of the jaws to close on the prey

(Sáez and Lamilla 1997, 2004; Rivera 2009). Moreover, com-
missural teeth are smaller because of a less important role in
grasping prey than for the symphysial teeth (Rivera 2009).

Mustelus schmitti, as do many shark species from the
Carcharhiniformes, exhibits sexual homodonty (Compagno
2003). Dental sexual dimorphism is widespread in batoids

(Bigelow and Schroeder 1953; Herman et al. 1995; Sáez and
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Table 2. Means size increment in length (%DL) for consecutive teeth in commissural, adcommissural, adsymphysial and symphysial rows in

Mustelus schmitti, by sex and maturity stage

The slash (/) separates the upper and lower jaw. The 95% bootstrap confidence intervals for the mean %DL are presented in parentheses

Sex and maturity stage Commissural Adcommissural Adsymphysial Symphysial Average

Juvenile male 1.04 (1.02–1.05)/ 1.74 (1.72–1.75)/ 1.30 (1.28–1.31)/ 1.64 (1.63–1.65)/ 1.42 (1.41–1.43)/

1.43 (1.40–1.46) 1.47 (1.45–1.49)/ 1.09 (1.06–1.12)/ 1.77 (1.75–1.79)/ 1.44 (1.43–1.46)/

Juvenile female 0.43 (0.41–0.45)/ 1.56 (1.54–1.59)/ 1.46 (1.44–1.48)/ 1.80 (1.78–1.82)/ 1.31 (1.30–1.33)/

0.71 (0.69–0.74) 1.61 (1.60–1.63) 2.14 (2.13–2.16) 2.11 (2.09–2.14) 1.65 (1.63–1.67)

Adult male 0.13 (0.11–0.14)/ 1.37 (1.36–1.38)/ 1.23 (1.21–1.24)/ 1.27 (1.25–1.28)/ 1.11 (1.09–1.13)/

0.93 (0.92–0.95) 1.61 (1.59–1.63) 1.20 (1.19–1.22) 1.05 (1.03–1.06) 1.32 (1.31–1.33)

Adult female 0.65 (0.64–0.66)/ 1.39 (1.38–1.40)/ 1.25 (1.23–1.28)/ 1.71 (1.69–1.73)/ 1.14 (1.12–1.15)/

1.33 (1.31–1.35) 1.56 (1.55–1.57) 2.28 (2.26–2.30) 1.50 (1.49–1.51) 1.56 (1.54–1.58)

Average 0.57 (0.56–0.58)/ 1.50 (1.49–1.51)/ 1.31 (1.30–1.32)/ 1.60 (1.59–1.61)/ 1.35 (1.34–1.36)/

1.11 (1.10–1.13) 1.57 (1.56–1.58) 1.70 (1.68–1.72) 1.60 (1.58–1.61) 1.50 (1.49–1.51)
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Lamilla 1997; Braccini and Chiaramonte 2002; Scenna et al.

2006) and has been primarily attributed to differential foraging

by the sexes, so as to alleviate intraspecific competition for food
(Feduccia and Slaughter 1974). However, toothmodifications in
adult males may increase the grasping ability of the mouths
during courtship (McEachran 1977; Kajiura et al. 2000). Sexual

dimorphism in sharks from the south-western Atlantic Ocean
has been demonstrated only in Schroederichthys bivius

(Gosztonyi 1973), a species that does not show differences in

diet between sexes (Sánchez et al. 2009), which probably
indicates a positive correlation with reproductive patterns.

The decrease in tooth lengthwithin each row from the lingual

to the labial side of the jaw, as a consequence ofwear, allowed an
estimation of the replacement rate in M. schmitti. This method,
which is used on fossil sharks (Botella et al. 2009), did not aim to

replace the standard methodology of clipping teeth; instead, it
required the results from the classical approach. The method

allowed tomake a leap from toothmeasures to replacement rates
in days, and was proposed for species not adapted to captivity.
For that purpose, more studies applying the standard technique
of clipping teeth are needed, so as to find the best-fit line for the

regression relationship between variables, and to assess with
more accuracy the replacement rate in days.

The dentition pattern observed in M. schmitti and their fast

replacement rate are characteristics of durophagous species that
feed on crustaceans (Nikolsky 1963; Figueroa et al. 2009).
Moreover, the replacement rate appeared also to be associated

with tooth length. For instance, juvenile specimens had smaller
teeth than did adults and showed slower replacement rates.
Similarly, upper jaw exhibited longer teeth than did the lower
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Fig. 6. Scanning electronmicroscope images of the (a) dental lamina, (b) isolated teeth in labial view, (c) isolated teeth in lingual view

and (d ) isolated teeth in labial view exhibiting the pulp cavity, from Mustelus schmitti.

Table 3. Mean tooth-replacement rates (days series21) in bold type, obtained by extrapolating%DL values (Table 2) on the Fig. 2, for commissural,

adcommissural, adsymphysial and symphysial rows, by sex and maturity stage

The slash (/) separates the upper and lower jaw. The 95% bootstrap confidence intervals for the mean tooth-replacement rate (days series�1) are presented in

parentheses

Sex and maturity stage Commissural Adcommissural Adsymphysial Symphysial Average

Juvenile male 3 (3–3)/4 (4–5) 5 (5–5)/5 (4–5) 4 (4–4)/3 (3–3) 5 (5–5)/5 (5–6) 4 (4–4)/4 (4–5)

Juvenile female 1 (1–1)/2 (2–2) 4 (4–4)/5 (5–5) 4 (4–4)/7 (6–7) 5 (5–5)/6 (6–7) 4 (4–4)/5 (5–5)

Adult male 1 (1–1)/3 (3–3) 4 (4–4)/5 (5–5) 4 (4–4)/4 (4–4) 4 (4–4)/3 (3–3) 3 (3–4)/4 (4–4)

Adult female 2 (2–2)/4 (4–4) 4 (4–4)/5 (5–5) 4 (4–4)/7 (7–7) 5 (5–5)/5 (5–5) 4 (3–4)/5 (5–5)

Average 2 (2–2)/3 (3–4) 5 (5–5)/5 (5–5) 4 (4–4)/5 (5–5) 5 (5–5)/5 (5–5) 4 (4–4)/5 (5–5)
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one, and a faster replacement rate. The estimated mean replace-
ment rate was 4 days series�1. Considering dental formulae

and the replacement rate, M. schmitti replaces ,5350 teeth
each year throughout its lifetime. Previous research has shown
that replacement rate varies from 10 to 12 days series�1 for

Mustelus canis (Ifft and Zinn 1948), 9 to 12 days series�1 for
Triakis semifasciata (Reif et al. 1978) and is 2 days series�1

for Carcharias taurus (Overstrom 1991). The replacement rate

is species-specific and is affected by the age of the animal, diet,
season and water temperature (Reif et al. 1978). For instance,
winter water temperatures result in slower replacement rates in
Ginglymostoma cirratum (Luer et al. 1990). The samples

collected for the present work were obtained during the warm
season (October–November). Thus, the replacement rate for
M. schmitti may be longer during the cold season. However,

additional sampling during the cold season is required to
confirm this hypothesis.
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