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MODELOS POBLACIONALES DE DOS SEXOS 
APLICADOS A ESPECIES POLIGÍNICAS

SYNOPSIS

We review a two-sex population model and focus on the link between demography and social structure in a polygynous species.
The model was applied to the southern elephant seal population of Península Valdés, one that shows contrasting trends in two
demographic subunits with distinct social structure. This approach provides a general framework to include social variables into
population dynamics. This perspective extends the scope of standard lineal models and adds a tool that identifies the relative effect
of changes in number of one sex on the population.
.

SINOPSIS

En este trabajo revisamos un modelo poblacional de dos sexos enfocándolo en la relación entre demografía y estructura social para
una especie poligínica. El modelo fue aplicado a la población de elefantes marinos del sur de Península Valdés, una población que
muestra tendencias contrastantes en dos subunidades con distinta estructura social. Este enfoque provee un marco general que per-
mite incluir variables sociales en la dinámica de poblaciones como una extensión del modelo lineal estándar y aporta una her-
ramienta al análisis de la dinámica identificando las influencias relativas de cada sexo.
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INTRODUCTION

Animals in general and mammals in particular,

neither disperse nor relate to one another randomly,

but form dynamic relationships of varying number,

complexity and duration. These patterns of associa-

tion and interdependence are referred to as social

structure, and affect survival and reproductive

strategies. In gregarious and polygynous animals,

individual hierarchies and the structure of a group

influence life-history parameters. The effects of

social structure on population parameters will then

have demographic consequences (Young and Isbell

1994, Milner-Gulland et al. 2003). Consequently,

including aspects of the social structure in demo-

graphic models may help to better interpret popula-

tion dynamics and then used them in conservation

applications (Gerber 2006). It could also facilitate

the identification of links between changes in social

parameters (e.g., group size, sex ratio, and mating

behavior) and population parameters (e.g., status,

trends, dynamic behavior).

We analyze and apply a two-sex model to under-

stand the relationship between some social parame-

ters and the dynamics of a polygynous population.

We seek to advance in conservation with a model of

predictive value that may help understand how

practical observations (harem size) could be impor-

tant in population model. To anchor our explo-

rations to the realities of natural systems, we analyze

data for the southern elephant seal, Mirounga leoni-

na, population of Península Valdés, Argentina.

Why this species?

Southern elephant seals are marine mammals

that have an annual cycle with two well-defined

pelagic phases, intercalated between molt and repro-

duction (Le Boeuf and Laws 1994). Adult males and

females reproduce ashore in September - October,

and provide one of the most extreme examples of

polygyny in a mammal (Le Boeuf and Laws 1994,

Campagna et al. 1993). The social units are harems

integrated by a single dominant male that monopo-

lizes access to sexually receptive females; these

harems may vary in size from few up more than 100

females at peak breeding season.

Adult male elephant seals can be up to five times

larger than reproductive females. In addition, differ-

ences between sexes are evident in the parameters of

the breeding and foraging behavior, and life history

strategies (Hindell et al. 1991, Campagna et al. 1998,

1999). Breeding females haul-out for about 30 days,

during which they fast and give birth to one pup per

year. After about 20 days of lactation, females mate

and get pregnant. Adults and subadult males haul-

out and fast during 6-8 weeks. Dominant males

attempt to inseminate as many females as possible

and keep all other males away, whereas lower rank

males take up peripheral positions in the harems and

mate opportunistically (Le Boeuf and Laws 1994). 
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Figure 1. Distribution of seals at PV and nearby areas. (subunit
North and South indicated by the thick grey line following the
contour of the coast) Thin lines provide an idea of harem sizes,
length line is proportional to the number of females in the harem
according to a scale given in the map. Harem location was geo-
referenced during the 2006 survey.
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Why this population?

The seal population of Peninsula Valdés (PV) has

been studied from a demographic and social behav-

ior perspective for the last 25 years (Campagna and

Lewis 1992, Baldi et al. 1996, Lewis et al. 1998).

Annual surveys of this population have been con-

ducted since 1995 during the peak of the breeding

season (first week of October) when about 96% of all

breeding females found ashore. Surveys encompass

the whole breeding area, which extends for 200 km

of coast on the Atlantic front of PV, between Punta

Buenos Aires and Morro Nuevo, and for 60 km south

of the peninsula, between Punta Ninfas and Punta

León (Figure 1). Two demographic subunits have

been identified in the North (between Punta Buenos

Aires and Punta Cantor) and South (between Punta

Cantor, Morro Nuevo, Punta Ninfas and Punta

León) of PV, respectively, with different trends

(increasing at South and decreasing at North), mean

harem size and sex ratio (Figure 2). PV population

is unique in terms of the expanding range of utiliza-

tion of the coast and increase in the number of

births. However, within the colony, the northern and

southern sides are like different populations. In the

following sections, we described a two-sex model, for

a general polygynous population, that was devel-

oped taking into consideration the biological charac-

teristics of elephant seals and the kind of data avail-

able for the PV population. 

BASIC HYPOTHESES 

AND MODEL STRUCTURE

We consider a stage-based, density-independent

model (Figure 3), similar in its general formulation

to those described in Caswell (2001), and place it in

the context of social structure. Five age categories

are defined for the model: newborn pups, subadult

females, adult females, subadult males and adult

males. The transition interval is one year. Females

require tsf years and males tsm years to grow from

newborn pups to subadult age categories. The tran-

sition parameters are recruitment to the subadult

stages (rsf , rsm), the probability of surviving and

remaining in the subadult stage (psf , psm), the prob-

ability of surviving and growing into the adult stage

(gaf , gam) and adult survival probabilities (paf , pam).

Figure 2. Left box: number of births observed for the whole PV
population and the two demographic subunits. Lines correspond
to model projections. Right boxes: social structure for the two
subunits represented by annual mean harem size and adult sex
ratio (mean number of adult females per adult male).

Figure 3. Life cycle z-transformed graph for the two-sex model
(Caswell 2001). Exponents on λ indicate the time interval
required for the transition.
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The mating system is modeled by means of the

function B(Naf , h.Nam) which determines the number

of expected matings, and represents a compromise

between the number of adult females, Naf , and the

male mating potential, h.Nam , where h is the harem

size (average maximum number of females that a

male can successfully mate) and Nam is the number

of adult males. This function times the constant a, a

female fertility parameter that we will call natality,

yields the number of births in one breeding season as

a function of the number of adults of both sexes in

the previous season. The primary sex ratio (relative

proportion of females at birth) is given by the con-

stant ρ. We assume that B is a homogeneous func-

tion of degree one (Pollard 1997, Caswell 2001), thus

the model is frequency dependent. Moreover, for a

vast range of functions B, the population converges

to an equilibrium structure, independently of the ini-

tial conditions, and grows exponentially with growth

rate λ = exp(r), where r is the intrinsic rate of

increase in Lotka’s equation (Nussbaum 1989). 

The model life cycle can be represented by the

following system of finite difference equations where

Np(t), Nsf(t), Naf(t), Nsm(t) and Nam(t) represents the

number of newborn pups, subadult females, adult

females, subadult males and adult males respective-

ly, at time t: 

(1)

MATING SYSTEM 

AND CRITICAL HAREM SIZE

We assessed the influence of the harem size on the

growth rate and the equilibrium structure of the

population, particularly on the adult sex ratio. The

growth rate and the equilibrium structure can be

obtained from the system (1). In particular, we can

see that:

, (2)

where Naf (e) and Nam(e) give the number of adult

females and adult males per newborn at equilibrium,

and the sex ratio is given by:

. (3)

These equations must be solved simultaneously

to obtain λ and the equilibrium sex ratio (Caswell

2001). If the mating function is B = Naf we have a

female-dominant linear model; the constant a is then

called adult female fertility and represents the num-

ber of births in one breeding season per adult female

in the previous season. Similarly, if B = h.Nam , the

model is male-dominant. In order to set the mating

function, a standard option is to consider that the

number of matings is determined by the less abun-

dant sex (Bessa-Gomes et al. 2004); this is the min-

imum (Min) model:

BMin = Min(Naf , h.Nam).

We also consider the maximum model:

BMax = Max(Naf , h.Nam),

this coincides with model dominated by the more

abundant sex. 

The following remarks summarize important

properties of first-degree homogeneous mating func-

tions in relation to one sex models and harem size,

and generalize similar results of Legendre et al.

(1999). Let λF, λM denote the growth rate of the

female and male dominant model, and let hc the sex
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ratio at equilibrium for the female dominant model,

called critical harem size. 

Remark 1. At equilibrium, the minimum model

coincides with the one sex model that has the small-

est growth rate and maximum model coincides with

the one sex model that has the largest growth rate.

Remark 2. Three cases can be recognized: 

I) h > hc, then λF < λM and Min model is female

dominant at equilibrium state. It regards to an

equilibrium state with enough males to mate all

females. 

II) h < hc, then λM < λF and Min model is male

dominant at equilibrium state. It matches with

a shortage of males.

III) h = hc, then λF = λM and Min model coincides

with Max model at equilibrium state.

Remark 3. Suppose B(x,y) is a homogeneous of

degree one non-decreasing function of x and y, and

suppose that B(1,1) = 1. Then

BMin(Naf , hNam) ≤ B(Naf , hNam) ≤ BMax(Naf , hNam).

If the model converges to an equilibrium state

with growth rate λ, then λMin ≤ λ ≤ λMax.

Proofs of the Remarks

We first proof Remark 1. That λMin ≤ λMax

is a direct consequence of (2). Let

and suppose

Naf (eMin) ≤ hNam (eMin), then λMin = α Naf (eMin).

However, this corresponds to growth rate of a

female dominant model, thus λMin = λF . Consider

now , if Naf

(eMax) > hNam(eMax) then λMax = λF and Naf (eMax) =

Naf (eMin), Nam (eMax) = Nam (eMin) which contradicts

the assumption above. Thus Naf (eMax) ≤ hNam

(eMax) and λMax = λM, it is to say that minimum

model coincides with a female dominant model at

equilibrium and maximum model coincides with a

male dominant ones. On the other hand, if hNam

(eMin) ≤ Naf (eMin) one can see analogously that

minimum model is male dominant and maximum

model is female dominant at equilibrium.

To prove Remark 2 recall that corre-

spond to equation (3) with λ = λF. Then λF

= αNaf (eF) = α hc Nam (eF), which implies that λF

is the growth rate of a male dominant model with

mean harem hc. Now, it is clear from (2) that the

growth rate of a male dominant model is a non-

decreasing function of h, and thus we have the

three stated cases. Remark 3 follows from B prop-

erties since that

and then, if the model converges to an equilibrium

state, equation (2) implies λ ≤ λMax . The left

inequality follows in the same way. At last, we note

that these Remarks, as well as equation (2), do not

depends of the particular form of the life cycle and

remain valid in any two sex model with a single

reproductive stage for each sex.

A PARAMETERIZATION 

OF THE MATING FUNCTION

In this section, we intend to go beyond the sim-

ple male and female dominant models to represent

fertility as a smooth function of adult sex ratio.

Given a harem size h, the number of mating events

will be primarily limited by a shortage of females (or

excess of males) whenever Naf < hNam and will be

limited by a shortage of males (or excess of females)

whenever Naf > hNam. The extent to which matings

are limited as a function of Naf and hNam will depend
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on the shape of the function B. A way to model the

influence of each sex in this process is by considering

a family of generalized mean functions:

,

where a is a real number. Extreme cases a ≈	−∞

and a ≈	+∞ correspond to the minimum and max-

imum functions seen before and values of a between

−∞ and −1 correspond to intermediate cases in

between the minimum function and the harmonic

mean. Actually is the adult

female fertility, which is a function of the relative

number of males and females (Figure 4). We propose

the family of mating functions BM as a tool to quan-

tify the effects of the sex ratio on birth numbers.

These functions are general enough when its param-

eters are made to vary, so as to embrace a wide range

of possible situations between weak (a tending to

±∞) and strong (a close to 0) influence of the sex

ratio on population trend.

APPLICATION TO PV SOUTHERN ELEPHANT

SEAL POPULATION

From annual populations surveys, we collect

counts of weanlings, adult females, adult males and

subadult males. Then, the total number of births

was calculated as the number of adult females plus

the weanlings (Boyd et al. 1996), and the annual

mean harem size was calculated as the average num-

ber of females per harem.

Parameter estimation 

The proportion of females and males at birth

was ρ = 0.5 (Campagna and Lewis 1992).

Recapture of tagged animals showed that female

sexual maturity occurs at age 4 (Lewis and

Campagna unpublished data). Young, pre-repro-

ductive females do not haul-out during the breed-

ing season, so for the application of this model we

considered the direct transition from newborns to

adult females (tsf = 3, psf = 0). Males reach the

subadult stage at the age tsm= 6 and stay in that

category for 4 years more (Lewis and Campagna,

unpublished data). Recruitment from newborn to

adult female (rsf .gaf = raf = 0.395) and recruitment

from newborn to subadult male (rsm = 0.241), as

well as annual survival for subadult males (ssm =

0.737) were calculated based on data from South

Georgia, a stable population for which complete

sex-specific life tables have been estimated

(McCann 1985). Parameters psm and gam were then

calculated according to the formula for fixed dura-

tion stages, constant survival and equilibrium con-

ditions (Crouse et al. 1987):

Here λ represents the population growth rate.

Adult survival and natality were estimated by fitting

3
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Figure 4. Adult female fertility αBM(Naf,hNam)/Naf as a function
of sex ratio. We have fixed a mean sex ratio s0 with excess of
males and a mean fertility f0 . Then the parameter a measure the
influence of sex ratio on the number of births form a=	−∞ (min-
imum, no influence unless sex ratio greater than h) to a=−1 (har-
monic mean, dashed line). Intermediate values correspond to
a =	−6,	−4 and −2.
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model predictions to observed time series of popula-

tion abundance by maximum likelihood with process

error (Hilborn and Mangel 1997). An unknown pro-

portion of subadult males were not registered in sur-

veys because these males remain at sea and do not

participate in breeding. Then, we considered an

expansion parameter c representing the ratio

between subadult males in the population and

subadult males ashore. 

For the mating function, we considered the BM

family, setting parameter h to the whole popula-

tion mean harem size observed over the eleven

years of surveys (h = 26), and estimating the

parameter a. The projections of the model,

obtained for each year between 2001 and 2005

based on the previous 6 years, were contrasted

with the corresponding numbers in surveys: Op(t),

Oaf (t), Osm(t), Oam(t), with a negative log-likeli-

hood function:

(4)

The maximum likelihood estimates are those

parameter values that minimize (4). The σ’s in

equation (4) weigh the influence of different infor-

mation sources and were estimated by means of an

iteratively reweighted least squares (IRLS) method

(Green 1984). We also estimated the growth rate λ

iteratively and calculated the corresponding psm

and gam parameters. For this, we assumed initially

a stationary population (λ = 1) and obtained the

corresponding maximum likelihood estimates in

each step recalculating then λ, psm and gam accord-

ing to the corresponding formulas.

Results

The model fit suggest a non-linear dynamics,

since the point estimate of a was a finite number

(Table 1). However, the minimum model (a =	−∞),

that in this case coincides with a female dominant

linear model, could not be rejected if we regarded

the confidence interval of a (Table 1). The estimat-

ed growth rate was λ = 1.001, the adult sex ratio at

equilibrium 11.176, and the critical harem size hc =

10.936. When we varied parameters α, paf , and pam

between his confidence limits, the growth rate range

from 0.973 to 1.034 and the critical harem size from

6.2 to 18.1.

CONCLUSIONS AND DISCUSSION

We develop a model assuming the male role in a

polygynous species influences population growth,

and integrating social structure variables as a tool to

understand how individuals respond to perturbation

over short time scales. The general model describes

a connection between population trend and social
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Table 1. Maximum likelihood estimates and confidence intervals
from likelihood profiles for the applied model.

Parameter Confidence interval (95%)

α - 4.030 −∞ -1.812

a 0.943 0.857 1.117

paf 0.783 0.752 0.807

pam 0.556 0.383 0.673

c 4.646 3.352 6.624

λ 1.001

psm 0.627

gam 0.110

σ1
2 0.00009

σ2
2 0.00072

σ3
2 0.02939

σ4
2 0.00102



parameters that take into account the sex ratio

(adult females per adult male) and harem size (as a

measure of the operational sex ratio, Gerber 2006).

We showed that, independently of the mating func-

tion shape, the sex ratio in a female-dominant model

(hc), and its relation with harem size (h), is what

determines the general population dynamics at equi-

librium, with an excess of males if h > hc and a

shortage of males if h < hc.

In our application to elephant seals, we fitted the

model to explain the observed trend, of the whole

PV population, for the last 11 years (Figure 2).

Results about influence of social structure are not

conclusive but the BM family of mating functions

was sesitive to small differences in the sex ratio and

the consequences of these differences on the number

of births. Moreover, the model captured the general

trend of North and South areas, when we replaced

the parameter h of the mating function for the sub-

unit mean harem size (h = 32 at South and h = 15

at North, Figure 2). The estimated critical harem

size was between 6 and 18 females per adult male,

that represents the baseline of reproductive poten-

tial of the population. For harem size below this

value would have a lack of sufficient males to ensure

that all cows are inseminated. From 1995 to 2005,

the sex ratio of the PV breeding population ranged

from 10.8 to 13.2 females per male and mean harem

size from 22.8 to 27.9 females per male. Thus, there

were enough males in the entire population to insem-

inate all breeding females. However, when we regard

the two subunits, we find that mean harem size at

North was very close to the sex ratio and close to

critical harem size too (Figure 2), in fact mean

harem size at North was in the estimated range of

hc, whereas mean harem size at South was out of the

estimated range. Thus, differences in harem size and

lack of males in the North could be related to the dif-

ferent trends between the subunits. 

Ultimately, the application of a model that links

demography to social structure in a population that

easily accessed to estimate trend in numbers, pro-

vides a tool to integrate data of conservation value

in a polygynous species. The most important south-

ern elephant seal populations in the world have been

either stable or decreasing sharply in the last 50

years (Hindell and Burton 1987, Pistorius et al.

2004). Today, some of them are apparently return-

ing to a positive trend (Boyd et al. 1996, Guinet et

al. 1999). The reasons of the difference in the trend

of the populations remain unknown, but our model

could be a tool to evaluate the effect on the popula-

tion when a risk factor alters the sexual proportion.
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