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h i g h l i g h t s

• We study the q-partition function of the Harmonic Oscillator.
• We study the poles of this q-partition function in phase space.
• We use Dimensional Regularization of Bollini and Giambiagi.
• We find interesting gravitational effects.
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a b s t r a c t

We show that typical Renyi’s statistical mechanics’ quantifiers exhibit poles. We are
referring to the partition function Z and the mean energy ⟨U⟩. Renyi’s entropy is char-
acterized by a real parameter α. The poles emerge in a numerable set of rational numbers
belonging to the α-line. Physical effects of these poles are studied by appeal to dimensional
regularization, as usual. Interesting effects are found, as for instance, gravitational ones. In
particular, negative specific heats.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Renyi’s information measure SR is a generalization of both Hartley’s and Shannon’s entropic quantifiers of our ignorance
regarding a system’s structural characteristics. SR is regarded as a quite important measure in several science’s areas. We
may cite, for example, ecology, quantum information, Heisenberg’s XY spin chain model, theoretical computing, conformal
field theory, quantum quenching, diffusion processes, etc. (See [1–12]).

The Renyi entropy is also relevant in statistics as signaling diversity and complexity measure [13,14]. SR is defined as [1]:

SR =
1

1 − α
ln

(∫
M
Pαdµ

)
. (1.1)

where P is probability’s density andM is the manifold where the integral is defined.
We will investigate here poles that emerge in computing the most important Renyi’s statistical quantities for the

harmonic oscillator (HO). We wish to ascertain the physical significance of these poles.
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To such an end we appeal to the dimensional regularization methodology developed by Bollini and Giambiagi [15–18],
and by ’t Hooft and Veltman [19]. plus its generalization, developed in [20].

Dimensional regularization is one of the most important theoretical achievements of contemporary physics, that has
generated thousands of papers in variegated branches of physics.Wemention that Ref. [21] purported to place upper bounds
on Renyi entropy outside the poles.

Why the HO? We do not mean to unravel HO’s peculiarities here. This is a very well known system already, of course,
described by α = 1 (when SR becomes Shannon’s entropy). We use the HO because of its simplicity, so that closed-form
formulas becomeavailable. This enormously facilitates our pole-research andwe thus obtain indications as of how toproceed
in more complex situations. This work is an unavoidable preliminary step to be taken before tackling such situations.

We will separately treat the one, two, and three dimensions cases, as the poles are different for each dimension. We
start below with some general considerations and will heavily rely on Ref. [22], which should be recommended as a useful
prerequisite due to Tsallis and Renyi entropies have similar probabilities distributions.

2. Theoretical considerations for the α-region outside the poles

2.1. α > 1

We showed in [22] that the classical Renyi-HO partition function is, for α > 1,

Z =
π ν

Γ (ν)

∫
∞

0

uν−1

[1 + β(1 − α)u]
1

1−α
+

du. (2.1)

where ν is the space dimension and u = p2 + q2. Here β =
1
kT and k is the Boltzmann’s constant. The integral therein

involved is

Z =
π ν

[β(α − 1)]ν
Γ

(
α

α−1

)
Γ

(
α

α−1 + ν
) (2.2)

Here we have used the result of Ref. [23]:∫ u

0
xν−1(u − x)µ−1dx = uµ+ν−1B(µ, ν)

Also, for the mean energy ⟨U⟩, we have from [22]

⟨U⟩ =
π ν

Γ (ν)Z

∫
∞

0

uν

[1 + β(1 − α)u]
1

1−α
+

du, (2.3)

whose result is

⟨U⟩ =
νπ ν

Z[β(α − 1)]ν+1

Γ
(

α
α−1

)
Γ

(
α

α−1 + ν + 1
) , (2.4)

or equivalently,

⟨U⟩ =
ν

β[α + ν(α − 1)]
. (2.5)

The entropy can be expressed via Z and ⟨U⟩ as (see [22])

S = lnZ +
1

1 − α
ln[1 + (1 − α)β⟨U⟩]. (2.6)

Using (2.2)–(2.5) we cast S as

S = ln

{[
π

β(α − 1)

]ν Γ
(

α
α−1

)
Γ

(
α

α−1 + ν
)}

+
1

1 − α
ln

[
α

[α + ν(α − 1)]

]
. (2.7)

We gather from (2.2) that Z is positive and finite for α > 1.

2.2. 0 < α < 1

Instead, for 0 < α < 1 one has

Z =
π ν

Γ (ν)

∫
∞

0

uν−1

[1 + β(1 − α)u]
1

1−α

du, (2.8)
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and

Z =
π ν

[β(1 − α)]ν
Γ

( 1
1−α

− ν
)

Γ
( 1
1−α

) . (2.9)

Let us pass now to the mean energy. For ⟨U⟩ we have

⟨U⟩ =
π ν

Γ (ν)Z

∫
∞

0

uν

[1 + β(1 − α)u]
1

1−α

du, (2.10)

or

⟨U⟩ =
νπ ν

Z[β(1 − α)]ν+1

Γ
( 1
1−α

− ν − 1
)

Γ
( 1
1−α

) , (2.11)

that can be recast as

⟨U⟩ =
ν

β[α − ν(1 − α)]
. (2.12)

Here

S = ln

{[
π

β(1 − α)

]ν Γ
( 1
1−α

− ν
)

Γ
( 1
1−α

) }
+

1
1 − α

ln
[

α

[α − ν(1 − α)]

]
. (2.13)

Here we find poles in the partition function.
Outside these poles we should have

1
1 − α

− ν > 0

or
1

1 − α
− ν < 0 ; Γ

(
1

1 − α
− ν

)
> 0. (2.14)

This is due to the fact that the partition function should be both positive and finite. For the second case we use the
equality [23]:

Γ

(
1

1 − α
− ν

)
= −

π

sinπ
(
ν −

1
1−α

)
Γ

(
ν + 1 −

1
1−α

) (2.15)

and ascertain that

sinπ

(
ν −

1
1 − α

)
< 0. (2.16)

Thus,

2p + 1 < ν −
1

1 − α
< 2p + 2 ; p = 0, 1, 2, 3, . . . (2.17)

This chain of inequalities shows that α and ν are related to each other.

3. The divergences of the theory

Remember beforehand thewell known fact that a classical entropy is defined only up to an arbitrary constant. From (2.9),
Z ’ poles arise when the Gamma arguments become [24]

1
1 − α

− ν = −p for p = 0, 1, 2, 3, . . . , (3.1)

or, equivalently, for

α =
1
2
,
2
3
,
3
4
,
4
5
, . . . ,

ν − 2
ν − 1

,
ν − 1

ν
. (3.2)

For ⟨U⟩’s poles we have
1

1 − α
− ν − 1 = −p for p = 0, 1, 2, 3, . . . , (3.3)

or, equivalently,

α =
1
2
,
2
3
,
3
4
,
4
5
, . . . ,

ν − 1
ν

,
ν

ν + 1
. (3.4)
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4. The one-dimensional scenario

In one dimension Z is regular and ⟨U⟩ has a singularity at α =
1
2 . For α ̸=

1
2 , Z and ⟨U⟩ can be easily evaluated. The result

is straightforward

Z =
π

βα
, (4.1)

⟨U⟩ =
1

β(2α − 1)
. (4.2)

As a consequence, we have for S

S = ln
(

π

βα

)
+

1
1 − α

ln
(

α

2α − 1

)
. (4.3)

When α =
1
2 , we have for Z

Z =
2π
β

, (4.4)

a regular value. Regularization is needed then only for ⟨U⟩.

4.1. Dealing with the divergences

In order to proceed with such regularizing procedure, the main idea is to write ⟨U⟩ as a function of the dimension ν in
the fashion (from (2.11))

⟨U⟩ν =
2ν+1νπ ν

Zβν+1 Γ (1 − ν), (4.5)

and carefully dissect this expression by appealing to Laurent’s expansion. We note first that [23]

Γ (1 − ν) = −
1

ν − 1
+ C +

∞∑
k=1

bk(ν − 1)k, (4.6)

where C is Euler’s constant. Let

f (ν) =
2ν+1νπ ν

βν+1 . (4.7)

The Laurent expansion of f (ν) in ν = 1 is

f (ν) =
4π
β2 +

4π
β2

[
1 + ln

(
2π
β

)]
(ν − 1) +

∞∑
k=2

ck(ν − 1)k. (4.8)

Using (4.6)–(4.8) we obtain

⟨U⟩ν =
1
Z

{
4π

β2(1 − ν)
+

4π
β2

[
C − 1 − ln

(
2π
β

)]
+

∞∑
k=2

dk(ν − 1)k
}

. (4.9)

Use now the Z value of (4.4) and find

⟨U⟩ν =
2

β(1 − ν)
+

2
β

[
C − 1 − ln

(
2π
β

)]
+

∞∑
k=1

ak(ν − 1)k. (4.10)

Dimensional regularization’s prescriptions assert that the ⟨U⟩-physical value is given by the ν − 1-independent term in

⟨U⟩ =
2
β

[
C − 1 − ln

(
2π
β

)]
. (4.11)

Using then (4.4)–(4.11) we find

S = ln

{
2π
β

[
C − ln

(
2π
β

)]2
}

. (4.12)

Note that, classically, S is defined up to an additive constant.
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5. The two-dimensional case

For two dimensions, Z has a singularity at α =
1
2 and ⟨U⟩ has singularities at α =

1
2 and α =

2
3 . Save for the case of these

singularities, we can evaluate their values of the main statistical quantities without the use of dimensional regularization.
Thus, we obtain

Z =
π2

β2α(2α − 1)
, (5.1)

⟨U⟩ =
2

β(3α − 2)
, (5.2)

S = ln
[

π2

β2α(2α − 1)

]
+

1
1 − α

ln
(

α

3α − 2

)
. (5.3)

5.1. The α = 1/2 pole

For α =
1
2 we must employ the treatment of the preceding Section, i.e., regularize, both Z and U . We start with Z

Z =

(
2π
β

)ν

Γ (2 − ν). (5.4)

We recall that

Γ (2 − ν) = −
1

ν − 2
+ C +

∞∑
k=1

bk(ν − 2)k, (5.5)

and define

f (ν) =
2νπ ν

βν
. (5.6)

The associated Laurent expansion is

f (ν) =
4π2

β2 +
4π2

β2 ln
(
2π
β

)
(ν − 2) +

∞∑
k=2

ck(ν − 2)k. (5.7)

Using (5.5)–(5.7) we find

Zν = −
4π2

β2(ν − 2)
+

4π2

β2

[
C − ln

(
2π
β

)]
+

∞∑
k=1

ak(ν − 2)k, (5.8)

and the physical value for he partition function becomes

Z =
4π2

β2

[
C − ln

(
2π
β

)]
. (5.9)

Since Z must be positive, we find the following upper bound for T

T <
eC

2πk
(5.10)

For U the situation is similar. From (3.4) we have

⟨U⟩ =
ν

Zπ

(
2π
β

)ν+1

Γ (1 − ν). (5.11)

Define

f (ν) =
ν2ν+1π ν

βν+1(1 − ν)
. (5.12)

The pertinent Laurent expansion is

f (ν) = −
16π2

β2 +
16π2

β2

[
1
2

− ln
(
2π
β

)]
(ν − 2) +

∞∑
k=2

ck(ν − 2)k. (5.13)

From (5.5)–(5.13) we find

⟨U⟩ν =
1
Z

{
16π2

β3(ν − 2)
+

16π2

β3

[
ln

(
2π
β

)
− C −

1
2

]
+

∞∑
k=1

ak(ν − 2)k
}

. (5.14)
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Thus, U ’s physical value is (remember (5.10))

⟨U⟩ =
4
β

ln
(

2π
β

)
− C −

1
2

C − ln
(

2π
β

) . (5.15)

Using (5.9)–(5.15) we find

S = ln

⎧⎪⎨⎪⎩4π2

β2

[
ln

(
2π
β

)
− C − 1

]2

C − ln
(

2π
β

)
⎫⎪⎬⎪⎭ . (5.16)

5.2. The α = 2/3 pole

For α =
2
3 , Z is finite and ⟨U⟩ has a pole. The procedure for finding their physical values is similar to that for the case

α =
1
2 . For this reason, we merely indicate the results obtained for Z , ⟨U⟩, and S. One finds

Z =
9π2

2β2 , (5.17)

⟨U⟩ =
6
β

[
C −

1
2

− ln
(
3π
β

)]
, (5.18)

S = ln

{
36π2

β2

[
C − ln

(
2π
β

)]3
}

. (5.19)

6. The three-dimensional instance

In three dimensions, Z has poles at α =
1
2 and α =

2
3 while ⟨U⟩ exhibits them at α =

1
2 , α =

2
3 , and α =

3
4 . Outside the

poles one has for Z , ⟨U⟩, and S , respectively,

Z =
π3

β3α(2α − 1)(3α − 2)
, (6.1)

⟨U⟩ =
3

β(4α − 3)
. (6.2)

S = ln
[

π3

β3α(2α − 1)(3α − 2)

]
+

1
1 − α

ln
(

α

4α − 3

)
. (6.3)

In this case α should satisfy the condition α < 5
4 for the mean energy to be a positive quantity.

6.1. The α = 1/2 pole

For α =
1
2 we have

Zν =

(
2π
β

)ν

Γ (2 − ν). (6.4)

The Laurent expansion is tackled as above. One finds

Zν = −
8π3

β3(ν − 3)
+

8π3

β3

[
ln

(
2π
β

− 1 − C
)]

+

∞∑
k=1

ak(ν − 3)k. (6.5)

From (6.5) it is easy to obtain the physical value of Z as

Z =
8π3

β3

[
ln

(
2π
β

)
− 1 − C

]
. (6.6)

Since Z is positive, one is led to the bound

T >
eC+1

2πk
. (6.7)
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In a similar vein, we have for ⟨U⟩

⟨U⟩ =
1
β

7
2 + 3C − 3 ln

(
2π
β

)
ln

(
2π
β

)
− C − 1

(6.8)

and from (6.6) and (6.8)

S = ln

⎧⎪⎨⎪⎩2π3

β3

[
2C + 3 − 2 ln

(
2π
β

)]2

ln
(

2π
β

)
− 1 − C

⎫⎪⎬⎪⎭ . (6.9)

6.2. The α = 2/3 and α = 3/4 poles

For α =
2
3 and α =

3
4 we give only the corresponding results, since the calculations are entirely similar to those for the

case α =
1
2 . Thus, for , α =

2
3 we have

Z =
27π3

2β3

[
C − ln

(
3π
β

)]
. (6.10)

Here one requires

T <
eC

3πk
(6.11)

⟨U⟩ =
1
β

9 ln
(

3π
β

)
− 6 − 9C

C − ln
(

3π
β

) (6.12)

S = ln

⎧⎪⎨⎪⎩27π3

2β3

[
ln

(
9π2

β2

)
− 2 − 2C

]3

[
c − ln

(
2π
β

)]2

⎫⎪⎬⎪⎭ . (6.13)

For α =
3
4 we have

Z =
32π3

3β3 , (6.14)

⟨U⟩ =
4
β

[
3C − 1 − 3 ln

(
4π
β

)]
, (6.15)

S = ln

{
5π3

β3

[
C − ln

(
4π
β

)]4
}

. (6.16)

7. Specific heats

We set k ≡ kB. For ν = 1, in the regular case we have for the specific heat C:

C =
k

2α − 1
. (7.1)

For ν = 2 one has

C =
2k

3α − 2
. (7.2)

Finally, for ν = 3 one ascertains that

C =
3k

4α − 3
. (7.3)
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Fig. 1. One dimension: specific heats at the pole versus temperature T .

7.1. Specific heats at the poles

For ν = 1; α =
1
2

C = 2k(C − 2 − ln 2πkT ). (7.4)

For ν = 2; α =
1
2

C =
2k(2 ln 2πkT − 1 − 2C )

C − ln 2πkT
−

2k
(C − ln 2πkT )2

. (7.5)

For ν = 2 and α =
2
3 one has

C = 6k
(
C −

3
2

− ln 3πkT
)

. (7.6)

For ν = 3; α =
1
2 ,

C = k
3C +

7
2 − 3 ln 2πkT

ln 2πkT − C − 1
−

k
2(ln 2πkT − C − 1)2

. (7.7)

For ν = 3 and α =
2
3 one finds

C = k
9 ln 3πkT − 6 − 9C

C − ln 3πkT
−

6k
(C − ln 3πkT )2

. (7.8)

Finally, for ν = 3 and α =
3
4 we obtain

C = 4k (3C − 4 − 3 ln 4πkT ) . (7.9)

Figs. 1–4 plot the mean energy’s pole-specific heats within their allowed temperature ranges, for one, two, and three
dimensions, respectively. Themost distinguished feature emerges in the cases inwhichwe dealwith ⟨U⟩-poles forwhich Z is
regular. We see in such a case that negative specific heats arise. Such an occurrence has been associated to self-gravitational
systems [25]. In turn, Verlinde has associated this type of systems to an entropic force [26]. We have derived an entropic
force for the Harmonic oscillator in Refs. [27–29]. It is natural to conjecture then that such a force may appear at the energy
associated poles.

That negative specific heats(NSH) do occur in gravitational systemsdoes not logically entail that the presence of a negative
specific heat in a generic system guarantees gravitational effects. However, given that, classically, gravitational systems are
the only ones known to be endowedwithNSH, it is a plausible inference that our Renyi systemsmaydisplay them. Plausibility
is not tantamount to certainty, of course.

Notice also that temperature ranges are restricted. There is an T -upper bound, and one may wish to remember, in this
respect, the notion of Hagedorn temperature [30], as an example a temperature’s upper bound. In two and three dimensions
there is also a lower bound, so that the system (at the poles) would be stable only in a limited T -range.
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Fig. 2. Two dimensions: specific heats at the two poles versus temperature T .

Fig. 3. Three dimensions: specific heats at the three poles versus temperature T .

Fig. 4. Three dimensions: the entropy for α = 3/4.
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8. Discussion

In this work we have appealed to an elementary regularization procedure to study the poles in the partition function and
the mean energy that appear, for specific, discrete q-values, in Renyi’s statistics of the harmonic oscillator. We studied the
thermodynamic behavior at the poles and found interesting peculiarities. The analysis was made in one, two, three, and 3
dimensions. Amongst the pole-traits we emphasize:

• The poles appear, both in the partition function and the mean energy, for 0 < α < 1.
• These poles are an artifact of having α ̸= 1.
• We have proved that there is an upper bound to the temperature at the poles, confirming the findings of Ref. [31], in

the sense that, for α ̸= 1, the heath bath of the canonical ensemble must be finite.
• In some cases, Renyi’s’ entropies are positive only for a restricted temperature-range. Lower T bounds seem to be a

new trait discovered here.
• Negative specific heats, characteristic trait of self-gravitating systems, are encountered. That negative specific

heats(NSH) do occur in gravitational systems does not logically entail that the presence of a negative specific heat in
a generic system guarantees gravitational effects. However, given that, classically, gravitational systems are the only
ones known to be endowedwith NSH, it is a plausible inference that our Renyi systemsmay display them. Plausibility
is not tantamount to certainty, of course.

• It is true that some magnetic systems exhibit negative specific heats. But magnetism is a quantum-relativistic
phenomenon and our treatment is strictly classical, so that our negative specific heats can only be associated to
gravitation.

Our physical results derive only from statistics, not from mechanical effects. This fact reminds us of a similar occurrence in
the case of the entropic force conjectured by Verlinde [26].

Indeed, the poles arise only because α ̸= 1. They are a property of the entropic quantifier, not of the Hamiltonian. Indeed,
only for α ̸= 1 a Gamma function appears in the partition function. This Gamma function may display poles.

Future research should be concerned with cases where it is already known in advance that α ̸= 1. For these cases, the
traits here discovered may acquire some degree of physical ’’reality’’.

The importance of the present communication resides in that fact of having disclosed Renyi’s entropy traits that could
not have been suspected before and we found the way of exhibiting the physics at the poles in Statistical Mechanics.

Appendix

In this appendix we will show that equation ∂S
∂β

= β
∂⟨U⟩

∂β
, which is valid for Boltzmann–Gibbs entropy, it is not so for

Renyi’s one. The Boltzmann–Gibbs entropy is given by:

S = lnZ + β⟨U⟩. (A.1)

from which we obtain
∂S
∂β

=
1
Z

∂Z
∂β

+ ⟨U⟩ + β
∂⟨U⟩

∂β
. (A.2)

As
1
Z

∂Z
∂β

+ β⟨U⟩ = 0, (A.3)

then
∂S
∂β

= β
∂⟨U⟩

∂β
. (A.4)

For Renyi’s entropy we have, instead,

S = lnZ +
1

1 − α
ln[1 + (1 − α)β⟨U⟩]. (A.5)

Thus,
∂S
∂β

=
1
Z

∂Z
∂β

+
⟨U⟩

1 + (1 − α)β⟨U⟩
+

β

1 + (1 − α)β⟨U⟩

∂⟨U⟩

∂β
. (A.6)

From (A.6) we see that (A.4) is not valid for Renyi’s entropy.
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