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We present the first exact calculation of the energy of the bound state of a one dimensional Dirac 
massive particle in weak short-range arbitrary potentials, using perturbation theory to fourth order (the 
analogous result for two dimensional systems with confinement along one direction and arbitrary mass 
is also calculated to second order). We show that the non-perturbative extension obtained using Padé 
approximants can provide remarkably good approximations even for deep wells, in certain range of 
physical parameters. As an example, we discuss the case of two gaussian wells, comparing numerical 
and analytical results, predicted by our formulas.
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1. Introduction

Almost 90 years have passed since Dirac established his famous 
equation, successfully combining Quantum Mechanics and Special 
Relativity, the two physical theories that completely changed our 
understanding of Nature at the beginning of the previous century. 
The importance of the Dirac equation can hardly be overstated: 
it predicts the existence of antimatter (discovered by Anderson in 
1932), it explains the spin of the electron, recovering Pauli’s theory 
in the low energy limit, and it also describes correctly the observed 
spectrum of the hydrogen atom, all at once. Another consequence 
of the Dirac equation, the Zitterbewegung (trembling motion) of the 
electron, has not been experimentally observed, although recently 
it has been simulated on physical systems composed of atoms 
which mimic the behavior of a free relativistic particle [1,2]. In 
recent years, the Dirac equation has also been used to describe 
the low energy spectrum of graphene, with either massless [3] or 
massive [4] excitations.

It is interesting to observe that even from the point of view of 
the theory, there are consequences of the Dirac equation that still 
need to be explored; our attention in the present paper is devoted 
to the study of the behavior of weakly bound relativistic states in 
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one and two dimensional systems. The non-relativistic counterpart 
of this problem, has been settled long time ago in a seminal paper 
by Simon [5], where the conditions for the existence of this bound 
state have been given and the analyticity (non-analyticity) of the 
energy in one (two) dimension has been established.

For the relativistic case, the conditions under which a Dirac par-
ticle is trapped in a one-dimensional potential have been identified 
in ref. [6]; more recently Cuenin and Siegel [7] have studied the 
weakly coupling eigenvalue asymptotics for the bound state of the 
one dimensional Dirac operator, perturbed by a matrix-valued and 
non-symmetric potential.

For the case of a non-relativistic particle in a one dimensional 
short-range potential, a formula for the energy of the bound state 
has been derived up to sixth order: Simon [5] reports an unpub-
lished result obtained by Abarbanel, Callan and Goldberger [8], 
which is exact to third order in the parameter controlling the 
strength of the potential, whereas higher order corrections (up to 
order six) have been derived later [11,10,9] using different tech-
niques. Interestingly, a similar analysis for the relativistic case is 
still lacking and this constitutes the main goal of the present paper.

The approach that we will follow in this paper has been orig-
inally proposed by Gat and Rosenstein [10], and applied to the 
non-relativistic version of the present problem (to third order in 
the perturbation parameter) and to a (1 + 1) dimensional QFT; in 
a recent work by two of the present authors, ref. [9], the method 
has been applied to calculate the energy of the bound state of an 
arbitrary shallow short range potential to sixth order.
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2. The method

We will first briefly describe how the method works for the 
non-relativistic problem and then discuss how it can be extended 
to its relativistic counterpart.

Let Ĥ be the hamiltonian of the problem

Ĥ(λ) = − d2

dx2
+ λV (x) (1)

where V (x) < 0 for x ∈ (−∞, ∞) and lim|x|→∞ V (x) = 0. Here 
λ > 0 is a parameter that controls the strength of the potential 
well. As noticed in [10], one cannot use Ĥ(0) as the unperturbed 
hamiltonian, since, for λ > 0 the spectrum of Ĥ contains (at least) 
one bound state, whereas the spectrum of Ĥ(0) is continuous.

Instead we use as unperturbed Hamiltonian the operator

Ĥ0 ≡ − d2

dx2
− 2βδ(x) , β > 0 . (2)

Ĥ0 has just one bound state with energy ε0 = −β2 and a con-
tinuum of states, for ε > 0 (the reader may refer to ref. [12] for a 
discussion of the one center δ interaction in one dimension). As a 
result, the Schrödinger equation[

Ĥ0 + λV (x)
]
ψ(x) = Eψ(x) (3)

can now be studied perturbatively in λ, working with a finite β
and assuming E = ∑∞

n=0 λnεn and ψ(x) = ∑∞
n=0 λnφn(x). The in-

frared divergencies, which would spoil the perturbative expansion 
when H(0) is used, manifest, at a given order, as inverse powers 
of β , and cancel out exactly, rendering each order perfectly finite.

Contrary to the approach followed in [10,9], where the standard 
Rayleigh–Schrödinger approach involving matrix elements was ap-
plied, here we obtain a perturbative solution of the Schrödinger 
equation in terms of the appropriate Green’s functions.

To lowest order in λ one has the eigenvalue equation(
− d2

dx2
− 2β δ(x)

)
φ0(x) = ε0φ0(x) (4)

In this case the eigenvalue and eigenfunction are ε0 = −β2 and 
φ0(x) = √

βe−β|x| respectively.
To higher orders one obtains the equations

Dφn(x) = −V (x)φn−1(x) +
n∑

k=1

εkφn−k(x) ≡ Sn(x) (5)

where

D ≡
(

− d2

dx2
− 2βδ(x) + β2

)
(6)

To deal with them one needs to consider the Green’s function 
G(x, y) defined by

DG(x, y) = δ(x − y) (7)

and write the solution of order n as φn(x) = ´
G(x, y)Sn(y)dy. 

The exact form of this and higher orders Green’s functions can be 
found in ref. [9]. This equation needs to be complemented by the 
conditionˆ

Sn(x)φ0(x)dx = 0 ; n ≥ 1 , (8)

which removes the “secular terms” in the expansion. Equation (8)
only gives the energy and the wave function at a given order.
This approach has the advantage of avoiding the appearance of 
infinite series and it allows one to consider more general eigen-
value equations, as in the case of a relativistic particle.

Let us now discuss the case of a relativistic particle in one or 
two dimensions, obeying the Dirac equation Ĥψ = E(λ)ψ , where

Ĥ = −i σ · ∇ + σ3 m + λW (x) (9)

and ψ = (ψ1 ψ2) is a spinor (σi are the usual Pauli matrices).
Here σ · ∇ = σ1∂x for the one dimensional case and σ · ∇ =

σ1∂x + σ2∂y for the two-dimensional one.
The potential, which depends only on x, is given by

W (x) = 1

2
[σ3 ( V (x) + U (x)) + 1 ( V (x) − U (x))] ,

where (V (x) + U (x))/2 and (V (x) − U (x))/2 are a vector and a 
scalar potential respectively.

Equations of the form of (9) have been studied previously, 
in particular for the case of point-like interactions in one di-
mension [13] and for graphene and graphite systems, subject to 
piecewise-constant potentials [14,15].

We can work in one or two dimensions in an unified frame-
work by using the ansatz exp[iqy]ψ(x) (the one dimensional case 
is recovered for q = 0) and write explicitly the Dirac equation in 
terms of its components

(−E + m + λV )ψ1 − i (q + ∂x)ψ2 = 0

−(E + m + λU )ψ2 + i (q − ∂x)ψ1 = 0 (10)

Using the second equation we can express ψ2 in terms of ψ1

and then use it inside the first equation to obtain a second order 
differential equation for ψ1 alone:

−ψ ′′
1 (x) + λU ′(x)ψ ′

1(x)

E + m + λU (x)
+ V(x)ψ1(x)

=
(

E2 − k2(q)
)

ψ1(x) (11)

with

V(x) ≡
(
λ(m − E)U (x) + λ(E + m)V (x) + λ2U (x)V (x)

)
(12)

and k(q) ≡ √
q2 + m2.

When U (x) = 0 this equation takes a simpler form of a 
Schrödinger-like equation, with an energy dependent potential, as 
already pointed out by Coutinho and Nogami [6]. For the special 
case E + m + λU (x0) = 0 for some x0 ∈ R, in which the denom-
inator in the second term of eq. (11) vanishes, the eigenfunction 
needs to obey the additional boundary condition ψ ′

1(x0) = 0 (see 
the discussion in Fig. 3).

Eq. (11) is now in the appropriate form to be attacked using the 
approach that we have previously described for the non-relativistic 
case, introducing an attractive delta potential of strength β , that 
allows to separate a single bound state from the continuum. This 
amounts to substituting − d2

dx2 → − d2

dx2 − 2βδ(x) = D − β2, previ-
ously defined, and then casting equation (11), in a compact form, 
formally similar to the nonrelativistic case, as(
D − β2

)
ψ1 = W̃ ψ1 , (13)

where

W̃(x) ≡ − λU ′(x)

E + m + λU (x)

d

dx
+

(
E2 − k2(q) − V(x)

)
(14)

is an operator defined on the real line (with the possible exception 
of x0 for which the denominator E + m + λU (x) vanishes).
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After expressing both the energy and wave function as power 
series in λ,

E =
√

k2 − 
, 
 =
∞∑

n=0

δn λn, ψ1 =
∞∑

n=0

φn λn (15)

and substituting into eq. (13), we obtain an infinite tower of sec-
ond order differential equations, corresponding to different orders 
in λ, which can be solved starting from the lowest order. This 
situation is completely analogous to the non-relativistic case, al-
though now W̃ in eq. (13) is an operator and it is non-linear 
in λ. The main consequence of this fact is the rapid proliferation 
of terms contributing at a given perturbative order, as the order is 
increased.

Applying the method of Gat and Rosenstein to this equation, we 
have obtained the perturbative expression for the energy of the 
fundamental mode to fourth order in λ for the one-dimensional 
problem and to second order in λ for the two-dimensional model.

For instance to order λ0 we obtain again eq. (4)

−φ′′
0 (x) − 2βδ(x)φ0(x) + δ0φ0(x) = 0 (16)

where δ0 = β2 and φ0(x) = √
βe−β|x| .

To order λ we obtain the equation

Dφ1(x) = −δ1φ0(x) +
(

−m +
√

m2 − β2

)
U (x)φ0(x)

−
(

m +
√

m2 − β2

)
V (x)φ0(x) − U ′(x)

m + √
m2 − β2

φ′
0(x)

≡ S1(x) (17)

To eliminate the secular term we need to enforce the conditionˆ
S1(x)φ0(x)dx = 0 (18)

as done in the non-relativistic problem.
Given the normalization of the φ0(x), this equation can be cast 

in the form

δ1 =
ˆ [(

−m +
√

m2 − β2

)
U (x)φ0(x)

−
(

m +
√

m2 − β2

)
V (x)φ0(x)

− U ′(x)

m + √
m2 − β2

φ′
0(x)

]
φ0(x)dx (19)

In order to comply with equation (19), we need to express δ1

as

δ1 =
∞∑

�=0

δ
(�)
1 β� (20)

and determine the coefficients δ(�)
1 by expanding the rhs of (19)

about β = 0:

δ
(0)
1 + βδ

(1)
1 + β2δ

(2)
1 + . . .

= −2βm

ˆ
V (x)dx + β2

ˆ
|x|

(
4mV (x) + U ′(x)

2mx

)
dx + . . .

In this way we easily conclude that

δ
(0)
1 = 0

δ
(1)
1 = −2m

ˆ
V (x)dx

δ
(2)
1 =

ˆ
|x|

(
4mV (x) + U ′(x)

2mx

)
dx

. . .
At first sight, it may appear that the calculation of δ
(�)
1 , for 

� > 0, is not needed in order to obtain the exact perturbative 
expression of the relativistic energy since at the end of the cal-
culation we are taking the limit β → 0+ . This observation however 
is incorrect since the Green’s functions contain infrared divergent 
terms which can provide finite contributions for β → 0+ when 
combined with the appropriate terms stemming from the expan-
sion of δn .

To clarify this point it is convenient to consider the equation to 
order λ2:

Dφ2(x) = −δ1φ1(x) − δ2φ0(x) − V (x)U (x)φ0(x)

− δ1(U (x) − V (x))

2
√

m2 − β2
φ0(x)

+ U (x)U ′(x)

(m + √
m2 − β2)2

φ′
0(x)

− δ1U ′(x)

2
√

m2 − β2(m + √
m2 − β2)2

φ′
0(x)

−
(

(m −
√

m2 − β2)U (x)

+ (m +
√

m2 − β2)V (x)

)
φ1(x)

− U ′(x)

m + √
m2 − β2

φ′
1(x) ≡ S2(x) (21)

where

φ1(x) =
ˆ

G(0)(x, y)S1(y)dy (22)

and

G(0)(x, y) ≡ 1

4β
− 1

4
(|x| + 2|x − y| + |y|) + O (β) (23)

is the appropriate Green’s function, given in ref. [9] (observe how 
the source terms become considerably more complicated as the 
order of the calculation grows).

In this case we obtain the equation

δ2 = −
ˆ

V (x)U (x)φ2
0(x)dx − δ1

ˆ
(U (x) − V (x))

2
√

m2 − β2
φ2

0(x)dx

+
ˆ

U (x)U ′(x)

(m + √
m2 − β2)2

φ0(x)φ′
0(x)dx

− δ1

ˆ
U ′(x)

2
√

m2 − β2(m + √
m2 − β2)2

φ0(x)φ′
0(x)dx

−
ˆ (

(m −
√

m2 − β2)U (x)

+ (m +
√

m2 − β2)V (x)

)
φ1(x)φ0(x)dx

−
ˆ

U ′(x)

m + √
m2 − β2

φ0(x)φ′
1(x)dx , (24)

where the contributions containing φ1(x) and φ′
1(x) are poten-

tially infrared divergent because of the behavior of eq. (23) for 
β → 0+ . However, it is easy to see that this is not the case since 
the normalization factors 

√
β in the wave functions take care of 

the singular behavior of eq. (23) for β → 0+; as a matter of fact 
one hasˆ

φ0(x) f (x)φ1(x)dx = −m
ˆ

V (x) f (x)dx + O (β) (25)

2
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Finally, upon expanding eq. (24) in powers of β , one then ob-
tains the expressions for the coefficients δ(�)

2 , � = 0, 1, . . . .
Keeping in mind these technical details, the calculation can be 

carried out systematically at higher orders, with a rapidly increas-
ing complexity, obtaining expressions for δn that are always free of 
infrared divergencies due to exact cancellations between divergent 
terms, occurring at each perturbation order (the same behavior 
was already observed for the non-relativistic problem in ref. [9]).

In what follows we present the leading behavior of δn (n =
0, . . . , 4) for β → 0+ . Since the solutions for the one-dimensional 
case can be recovered from the corresponding two-dimensional ex-
pressions setting q = 0, we first assume |q| ≥ 0, and report the 
coefficients of 
 up to second order

δ0 = β2 ,

δ1 = −2β F(k) + O(β2) ,

δ2 = F(k)2 + O(β) , (26)

where

F(k) = 1
2

ˆ
dx ((m + k) V + (m − k) U ) . (27)

For the one-dimensional case (q = 0), we have computed the 
energy corrections up to order four. Terms up to second order are 
obtained by making κ = m in formula (26), while δ3 and δ4 are 
given by

δ3 = 2m3 F1F2,1 + O(β) ,

δ4 = m4 η4 − m2κ4 + O(β) , (28)

where

η4 = (F1)
2 F2,2 + 2F1F3,1 + (

F2,1
)2

,

κ4 = (1/2)
(
F1F3,2 + (F1)

4
)

. (29)

F1, . . . , F3,2 are functionals of V and U given by

F1 = F(m)/m =
ˆ

dx V (x) ,

F2,1 =
¨

dxdy V (y) |x − y| V (x) ,

F2,2 =
¨

dxdy V (y) (x − y)2 V (x) ,

F3,1 =
˚

dxdydz |x − y| |y − z| V (x)V (y)V (z) ,

F3,2 =
˚

dxdydz
|x − y| |x − z|
(x − y)(x − z)

U (x)V (z)V (y) .

The energy of the bound state in one dimension reads

E(1)(λ) = m + Ẽ(λ) + λ4 δE + O(λ5) , (30)

where

Ẽ = −mλ2

2
F2

1 − m2λ3F1F2,1 − m3λ4

2
η4 (31)

is the non-relativistic formula previously obtained to fourth order 
working with the Schrödinger equation (see refs. [8,11,9]) and δE
is the leading relativistic correction which appears to fourth order

δE = m

2

(
κ4 − 1

4
F4

1

)
(32)

Note that, while Ẽ(λ) is a functional of V only, δE is a func-
tional both of V and U .
In two dimensions, for quasi-bound states of the form ψ(x, y) =
exp(iq)ψ(x), the energy is given by

E(2)(λ) = k − (λ2/2k)F(k)2 + O(λ3) . (33)

For the case of a relativistic one-dimensional square well, dis-
cussed by Greiner [16] in detail, Eq. (30) reproduces the exact 
results up to fourth order. As a further test of our perturbation 
expressions we also consider the simple case in which V (x) =
−(1 + γ )δ(x), U (x) = −(1 − γ )δ(x) and q = 0. In order to avoid 
the possible discontinuity of both functions ψ1,2(x) at x = 0 we 
set γ = 1. In this case ψ1(x) is continuous at x = 0 and a straight-
forward calculation shows that

E(1) = m
1 − λ2

1 + λ2
= m − 2mλ2

(
1 − λ2 + λ4 + . . .

)
, (34)

and ψ(x) = √
βe−β|x| , with β = √

m2 − E2 = 2mλ
1+λ2 .

Note that 0 < β ≤ β(λ = 1) = m. Present perturbation theory 
yields the first three terms of the series (34) exactly.

In the perturbative region, 0 < λ � 1, the relativistic correc-
tion δE , provides in general a tiny correction to the correspond-
ing non-relativistic expression, Ẽ , implying that the weakly bound 
electron is essentially non-relativistic. This hierarchy can however 
be modified already at moderate values of λ. In this case, the 
energy of the bound state cannot lower indefinitely as the well be-
comes deeper and deeper, as in the non-relativistic case, since it is 
trapped between two continua, the continuum of positive energy 
states, for E ≥ m, and the continuum of negative energy states, for 
E ≤ −m. This behavior can be captured using a diagonal Padé ap-
proximant, which tends to a constant for λ → ∞:

E(1)

Pade = m + m2λ2F4
1

−2mF2
1 +4m2λF1F2,1+2λ2

(
−2δE+m3

(
η4−4F2

2,1

)) (35)

This formula provides a completely analytical expression for the 
energy of the relativistic bound state which can be used for larger 
values of λ; the non relativistic case can either be obtained set-
ting δE → 0 in this expression, or using the simpler [2, 1] Padé 
approximant, which is linear as λ → ∞:

E(1)

Pade−nr = − mλ2F3
1

4mλF2,1 − 2F1
(36)

One way to assess the region of applicability of Eq. (35) is by 
identifying the region in parameter space where

δE >
m3

2

(
η4 − 3F2

2,1

)
(37)

is fulfilled. When this condition is met, the denominator of E(1)

Pade
has no real pole and consequently the resummation is more accu-
rate.

3. An example

As an example, we consider the gaussian wells V (x) = −(1 +
γ )e−αx2

and U (x) = −(1 − γ )e−αx2
, where −1 ≤ γ ≤ 1 is a pa-

rameter which controls the depths of V (x) and U (x).1

In this case the inequality (37) reads

πα(γ + 5) > 8
(
−6 + 3

√
3 + 2π

)
(γ + 1)m2 (38)

The region in parameter space where the inequality is fulfilled 
is displayed in Fig. 1, for three values of α. Notably the Padé has 
always real poles when δE is set to zero.

1 Note that the case |γ | > 1 can be reduced to the present case by means of a 
redefinition of λ.
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Fig. 1. Parameter space for the inequality (38) for three different values of α. (Color 
online.)

In Fig. 2 we plot the quantity m − E for the case m = 0.1
and α = 1, as a function of λ, for γ = 1 (the plot for γ = 0, not 
reported here is quite similar). The blue points represent the nu-
merical values obtained applying the shooting method directly to 
Eq. (11); the red points are obtained solving the corresponding 
non-relativistic Schrödinger equation. These values are compared 
with the relativistic Padé of Eq. (35) (solid line), the non-relativistic 
[2, 2] Padé obtained setting δE = 0 (dashed line) and the non-
relativistic Padé of Eq. (36) (dot-dashed line). The horizontal lines 
correspond to the limit values m(1 + γ ). While δE provides a tiny 
contribution at small λ, it plays an essential role at larger values 
of λ.

The normalized upper and lower components of the Dirac 
spinor, ψ1,2(x), are plotted in Fig. 3, for the case m = 0.1, α = 1, 
γ = 0 and λ = 1. The corresponding probability density ρ(x) is 
also displayed. ψ1(x) is obtained numerically using the shooting 
method. By inspection of the Eq. (11) we see that the coeffi-
cient of ψ ′

1(x) is singular when E + m + λU (x) = 0: this forces 
the first derivative of the wavefunction to vanish at the singular-
ity, represented by a vertical line in the plot. Out of this region 
the wave function decays exponentially as ψ1(x) ∝ e−

√
m2−E2x . The 

dashed line is a fit of the numerical results, within the interval 
5 ≤ x ≤ 50 and it corresponds to ψ

( f it)
1 (x) = 0.5929 · e−0.0931 x . 

Note that �( f it) = 0.0931 is in perfect agreement with the ex-
pected expression � = √

m2 − E2.
This remarkable agreement can be appreciated from Fig. 4, 

where the constant � is extracted from the fit of the numeri-
cal results of the wave function ψ1(x), at different values of λ

(the dots in the plot), and contrasted with the explicit expres-
sions obtained using the Padé approximant of Eq. (35). While, in 
the non-relativistic case, the wave function decays more and more 
strongly as λ → ∞, in the relativistic case the energy of the bound 
state obeys the inequality −m < E < m, and therefore 0 < � ≤ m. 
The particular behavior of the analytic formula for � when γ = 0, 
which breaks down at λ ≈ 10, is easily explained by the fact that 
the Padé slightly underestimates the limiting energy for λ > 10, 
and as a result 

√
m2 − E2 becomes imaginary.

4. Conclusions

We have calculated for the first time the energy of a relativistic 
bound state in a shallow short range potential in one dimension 
to fourth order in perturbation theory, proving that the first gen-
uinely relativistic correction appears only at order four. We have 
confirmed this generally tiny contribution in a number of cases 
where it was possible to contrast our results with exact results 
available in the literature and with precise numerical calculations, 
carried out for the case of a pair of gaussian potentials.
Fig. 2. Energy of the relativistic and non-relativistic bound states (blue and red dots 
respectively) compared with the relativistic and non-relativistic Padé approximants 
(solid, dashed and dot-dashed lines respectively). Here m = 0.1, α = 1 and γ = 1. 
The horizontal lines are the limit values m − E = m(1 + γ ). (Color online.)

Fig. 3. Normalized upper and lower components ψ1,2(x) and probability density of 
the Dirac spinor for m = 0.1, α = 1, γ = 0 and λ = 1, obtained using the shooting 
method. The vertical line is the location of the singularity E + m + λU (x), where 
ψ ′

1(x) = 0. The dashed line is the fit of the numerical results between x = 5 and 
x = 50, ψ( f it)

1 (x) = 0.5929 · e−0.0931 x . (Color online.)

Fig. 4. Constant � of the exponential decay of the wave function. The dots (blue and 
green) are the values of � obtained from the fit of the numerical wave function at 
different values of λ at γ = 1 and γ = 0 respectively. The solid and dashed lines 
are the explicit expressions obtained using the Padé of Eq. (35). (Color online.)
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We have also shown that it is possible to extend the perturba-
tive analysis to the study of deep wells, by using a Padé approx-
imant which captures the asymptotic behavior of the energy for 
λ → ∞. The simple analytical formula that we have obtained has 
been tested for the (not exactly solvable) case of gaussian well, 
finding that the analytical approximation is in excellent agreement 
with the numerical results.
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