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h i g h l i g h t s

• Quantum-mechanical systems with screw dislocation are receiving considerable interest.
• The harmonic oscillator with screw dislocation is not completely separable.
• The screw dislocation removes the degeneracy.
• The variational method is useful for obtaining eigenvalues and eigenfunctions.
• The spectrum exhibits a rich structure of avoided crossings.
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a b s t r a c t

We obtain the eigenvalues of the harmonic oscillator in a space
with a screw dislocation. By means of a suitable nonorthogonal
basis set with variational parameters we obtain sufficiently ac-
curate eigenvalues for an arbitrary range of values of the space-
deformation parameter. The energies exhibit a rich structure of
avoided crossings in terms of such model parameter.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Space dislocations have been useful for the description of a variety of physical phenomena. Among
such applications we mention an analysis of the influence of frozen-in topological defects in a crystal
on the long-wavelength quantum states of a particle [1], a study of electrons moving in a magnetic
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field in the presence of a screw dislocation [2], the scattering of electrons on a screw dislocation [3],
an investigation of the quantum scattering of an electron by a screw dislocation with an internal
magnetic flux [4], a geometricmodel for the explanation of the origin of the observed shallow levels in
semiconductors threaded by a dislocation density [5], the influence of the Aharonov–Casher effect on
the Dirac oscillator in three different scenarios of general relativity [6], an investigation of torsion and
noninertial effects on a spin-1/2 quantum particle in the nonrelativistic limit of the Dirac equation [7],
a study of ac electronic transport in semiconductor crystals with a screw dislocation [8], a two-
dimensional electron gas on a cylindrical surface with a screw dislocation [9], a study of spin currents
induced by topological screw dislocation and cosmic dispiration [10], an analysis of a relativistic
scalar particle with a position-dependent mass in a spacetime with a space-like dislocation [11],
a study of the influence of a screw dislocation on the energy levels and the wavefunctions of an
electron confined in a two-dimensional pseudoharmonic quantum dot under the influence of an
external magnetic field and an Aharonov–Bohm field [12] and the effect of a screw dislocation on
an anharmonic oscillator [13].

The present paper is motivated by those of Filgueiras et al. [12] and Bakke [13] who solve the
Schrödinger equation with a screw dislocation. In the former case the authors choose a deformed
potential Vd(ρ) and a scalar pseudoharmonic interaction Vconf(ρ), ρ2

= x2 + y2, so that the motion
of the electron along the z-axis is free. Under these conditions the resulting eigenvalue equation is
separable and exactly solvable. Later the authors consider that the electrons are confined by infinite
walls at z = 0 and z = d and claim that the eigenvalue equation is still separable. In the latter
case the author chooses a potential V (ρ) so that the motion of the particle is unbounded along the
z direction and the spectrum continuous. Here we choose one of the simplest confining potentials,
the three-dimensional harmonic oscillator, and obtain approximate eigenvalues of the resulting
nonseparable deformed Schrödinger equation. In Section 2 we develop the main equations for the
model, in Section 3 we first obtain approximate results by means of a simple variational ansatz that
later use as the starting point of a more accurate Rayleigh–Ritz variational calculation. In this section
we show results for different quantum numbers in a range of values of the dislocation parameter.
Finally, in Section 4 we summarize the main results and draw conclusions.

2. The model

Some kind of topological defects are described by means of the line element

ds2 = gijdyidyj, (1)

where gij are the elements of the metric tensor, {yi} is a suitable set of curvilinear coordinates and
summation on repeated indices is assumed. The Laplacian in such a space is given by

∇
2

=
1

√
|g|
∂i

√
|g|g ij∂j, (2)

where |g| is the determinant of the matrix g =
(
gij

)
, ∂i =

∂

∂yi
and g ijgjk = δik. Valanis and

Panoskaltsis [14] derive expressions for a wide variety of deformations in a material body.
The Hamiltonian operator for a particle of mass m moving in such a space under the effect of a

potential-energy function V (r) is

H = −
h̄2

2m
∇

2
+ V (r). (3)

In order to solve the Schrödinger equation forH it is convenient to choose a convenient set of units.
We choose a set of dimensionless coordinates r′ = r/L, where L is an arbitrary length, and rewrite the
Hamiltonian operator in dimensionless form as

2mL2

h̄2 H = ∇
′2

+ v(r′), v(r′) =
2mL2

h̄2 V (Lr′), (4)

where ∇
′2

= L2∇2
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Following Filgueiras et al. [12] and Bake [13] we choose the screw dislocation

ds2 = dρ2
+ ρ2dφ2

+ (dz + ηdφ)2, (5)

where ρ =

√
x2 + y2, φ = arctan (y/x) and η characterizes the torsion field (dislocation). In this case

the Laplacian is

∇
2

=
1
ρ
∂ρρ∂ρ + ∂2z +

1
ρ2

(
∂φ − η∂z

)2
. (6)

If we choose a harmonic interaction

V (r) =
k
2
r2 =

k
2

(
ρ2

+ z2
)
, (7)

and the length unit L =

√
h̄

mω , ω =

√
k
m , the dimensionless Schrödinger equation becomes[

−
1
ρ
∂ρρ∂ρ − ∂2z −

1
ρ2

(
∂φ − λ∂z

)2
+ ρ2

+ z2
]
ψ = Eψ,

E =
2mL2

h̄2 E, λ =
η

L
, (8)

where we have omitted the primes in ρ ′ and z ′.
If we write

ψ (ρ, z, φ) = F (ρ, z)eimφ, m = 0,±1,±2, . . . (9)

then we are left with an equation for F (ρ, z)[
−

1
ρ
∂ρρ∂ρ −

(
1 +

λ2

ρ2

)
∂2z +

2imλ
ρ2 ∂z +

m2

ρ2 + ρ2
+ z2

]
F (ρ, z) = EF (ρ, z). (10)

Note that this equation is invariant under the transformations (m → −m, z → −z) and (λ → −λ,
z → −z), therefore the eigenvalues depend onm2 and λ2.

When λ = 0 the equation is fully separable Fnkm(ρ, z) = fnm(ρ)gk(z) and the energy eigenvalues
Enkm(0) are gnkm-fold degenerate, where

Enkm(0) = 4n + 2k + 2|m| + 3, n, k = 0, 1, . . . ,

gnkm =
1
2
(4n + 2k + 2|m|) (4n + 2k + +2|m| + 1) . (11)

Note that the dislocation removes almost all the degeneracy leaving only that coming from the z-
component of the angular momentum. In what follows we use the quantum numbers n, k and |m| to
label the eigenvalues of the nonseparable Schrödinger equation for λ > 0. Obviously, onlym is a good
quantum number.

3. Variational approach

In this sectionwe try to obtain approximate eigenvalues to Eq. (10). Our starting point is the simple
(unnormalized) variational function for the states with n = k = 0:

ϕ(ρ, z) = ρs exp
(
−ρ2/2 − bz2

)
, (12)

where s and b are variational parameters. A straightforward calculation shows that the minimum of

W (s, b) =
⟨ϕ|H|ϕ⟩

⟨ϕ|ϕ⟩
, (13)

is given by

s =

√
bλ2 + m2,

(
4b2 − 1

)√
bλ2 + m2 + 4b2λ2 = 0, (14)
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Fig. 1. Lowest eigenvalues with |m| = 0, 1, 2.

and the upper bound to the lowest energy for a given value of |m| is

W =
8b

√
bλ2 + m2 + 4b2 + 8b + 1

4b
. (15)

In order to improve the accuracy of the results and obtain the excited-state energies we apply the
Rayleigh–Ritz variational method with the nonorthogonal basis set

ϕ(ρ, z) =

M−1∑
i=0

N−1∑
j=0

cijρ i+sz j exp
(
−ρ2/2 − bz2

)
, (16)

where s is given by Eq. (14). In this case we obtain the minimum of the variational integral (13) with
respect to the linear parameters cij and to the nonlinear one b.

Fig. 1 shows the lowest eigenvalues Enkm(λ) for |m| = 0, 1, 2 in the interval 0 ≤ λ ≤ 5. We
appreciate that the energies exhibit a rich structure of avoided crossings. Such avoided crossings take
place because eigenvalues with the same quantum number m do not cross. The arguments for the
noncrossing rule are similar to those for the states with the same symmetry already discussed by
several authors [15–18].

Some of the avoided crossings shown in those figures may appear to be actual crossings because
the eigenvalues approach each other quite closely. In order to illustrate this point, Fig. 2 shows the
avoided crossings between eigenvalues in the multiplets (E102, E022), (E112, E032) and (E202, E122, E042)
in somewhat more detail.

The first pair of subfigures in Fig. 2 show the eigenvalues (E102, E022) stemming from E(0) = 11. The
right subfigure is just an enlargement of that part of the left one corresponding to the avoided crossing.
The second pair of subfigures illustrate the same feature for the pair of eigenvalues (E112, E032)
stemming from E(0) = 13. The last subfigure shows the triplet of states stemming from E(0) = 15.

What is interesting in this model is that the eigenvalues of a given multiplet with a fixed value
of |m| exhibit avoided crossings among themselves for sufficiently small values of λ (for example
0 < λ < 1). For greater values of λ there are avoided crossings between eigenvalues of different
multiplets as shown in Fig. 1.
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Fig. 2. Some multiplets of eigenvalues with |m| = 2.

4. Conclusions

As stated in the introduction this paper ismotivated by those of Filgueiras et al. [12] and Bakke [13].
The main difference is that the models chosen by those authors are separable and do not reveal
the possibility of avoided crossings. In addition to this, in those models the motion of the particle
is unbounded in the z direction and the corresponding spectra are continuous. Filgueiras et al. [12]
attempted to confine the electron in the z axis by means of a square-well potential but they did
not take into account the correct boundary conditions. Their wavefunctions satisfy ψ(ρ, ϕ, d) =

eiℓπψ(ρ, ϕ, 0), where ψ(ρ, ϕ, 0) ̸= 0, and, consequently, their results apply to a problem with
boundary conditions ψ(ρ, ϕ, d) = ±ψ(ρ, ϕ, 0) and not to the box confinement. If the walls of the
square well are located at z = 0 and z = d then the Schrödinger equation with the correct boundary
conditions ψ(ρ, ϕ, 0) = ψ(ρ, ϕ, d) = 0 is not separable.

In this paper we have chosen a harmonic-oscillator potential in order to investigate the effect of
space dislocation on the spectrum. The reason for this choice is that this potential is well known
and facilitates the calculation of the matrix elements necessary for the application of the variational
method. Besides, the Schrödinger equation is exactly solvablewhen there is no dislocation andwe can
therefore easily appreciate how the dislocation breaks the degeneracy. Although this model may not
have a clear physical application it nevertheless shows what one may expect from a realistic model
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with a confining potential and screw dislocation. Most probably such model will also exhibit some
kind of structure of avoided crossings. The screw dislocation not only breaks the degeneracy but also
gives rise to avoided crossings between energy levels.
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