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Abstract

Let A be a C∗-algebra and φ :A → L(H) be a positive unital map. Then, for a convex function f : I → R

defined on some open interval and a self-adjoint element a ∈ A whose spectrum lies in I , we obtain a
Jensen’s-type inequality f (φ(a)) � φ(f (a)) where � denotes an operator preorder (usual order, spectral
preorder, majorization) and depends on the class of convex functions considered, i.e., monotone convex
or arbitrary convex functions. Some extensions of Jensen’s-type inequalities to the multi-variable case are
considered.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Jensen’s inequality is the continuous version of the usual definition of convex function and it
can be stated in the following way: let I be an open interval and f : I → R a convex map. Then,
for every probability space (X,P ) and every integrable map g :X → I ,

f

(∫
X

g dP

)
�

∫
X

f ◦ g dP.
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In the context of C∗-algebras the simplest generalization of Jensen’s inequality can be made by
taking a state ϕ and a selfadjoint element a of a C∗-algebra A such that σ(a) ⊆ I . In this case,

f
(
ϕ(a)

)
� ϕ

(
f (a)

)
, (1)

because the state ϕ restricted to the C∗-algebra generated by a can be represented as an inte-
gral with respect to a probability measure. If one replaces ϕ by a unital positive map between
two C∗-algebras, inequality (1) is only true for operator convex functions f , as one can prove
from the well-known characterizations of operator convexity (see for example [4,6,8,9]), us-
ing the Stinespring’s theorems. Previous works on the matter, such as Brown–Kosaki [5] and
Hansen–Pedersen [9] suggest the idea of studying Jensen’s type inequalities with respect to other
preorders, such as the spectral order and submajorization (see Section 2 for their definitions), in
order to consider convex (but not operator convex) functions.

In this paper we study different Jensen’s type inequalities for a positive (unital) map between
two C∗-algebras, with respect to the above mentioned preorders. In the following list we mention
the main results, which are stated in Section 3: Let A, B be unital C∗-algebras, φ :A → B
a positive unital map, f a convex function defined on an open interval I and a ∈ A, such that
a = a∗ and σ(a) ⊆ I .

(1) If f is monotone and B is a von Neumann algebra, then

f
(
φ(a)

)
� φ

(
f (a)

)
(spectral preorder).

(2) If B is abelian or, more generally, if φ(f (a)) and φ(a) commute, then

f
(
φ(a)

)
� φ

(
f (a)

)
.

(3) If B a finite factor, then f (φ(a)) ≺w φ(f (a)) (submajorization).

We remark that all these inequalities still hold for contractive positive maps, under the assump-
tion that 0 ∈ I and f (0) � 0. In Section 4 we briefly describe the multi-variable functional
calculus and obtain in this context similar results to those of Section 3 by using essentially the
same techniques. In Section 5 we apply the results obtained to the finite dimensional case, where
there exist fairly simple expressions for the spectral preorder and for the submajorization. Several
results of this work were included in a Los Alamos preprint version in 2004 (see [1]). Since then,
some related results have appeared; for example [2], which has some overlap with Section 5, or
[8,13], where our results for finite factors are applied.

2. Preliminaries

Let A be a C∗-algebra. Throughout this paper Asa denotes the real vector space of self-
adjoint elements of A, A+ the cone of positive elements, Gl(A) the group of invertible elements
of A and U(A) its unitary group. We also assume that all the C∗-algebras in consideration are
unital. Given a Hilbert space H, we denote by L(H) the algebra of all bounded linear operators
on H. The range of c ∈ L(H) will be denoted by R(c), its null space by ker c and its spectrum
by σ(c). If p,q ∈ L(H) are orthogonal projections, we denote by p ∧ q (respectively p ∨ q)
the orthogonal projection onto the intersection of their ranges (respectively the closed subspace
generated by their ranges).
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2.1. Spectral preorder and majorization

In what follows Ea[I ] denotes the spectral projection of a self-adjoint operator a in a von Neu-
mann algebra A, corresponding to a (Borel) subset I ⊆ R. Let us recall the notion of spectral
preorder.

Definition 2.1. Let A be a von Neumann algebra. Given a, b ∈ Asa , we say that a � b

if Ea[(α,+∞)] is equivalent, in the sense of Murray–von Neumann, to a subprojection of
Eb[(α,+∞)] for every real number α.

In finite factors the following result can be proved (see [5,13]).

Proposition 2.2. Let A be a finite factor, with normalized trace tr. Given a, b ∈Asa , the following
conditions are equivalent:

(1) a � b.
(2) tr(f (a)) � tr(f (b)) for every continuous increasing function f defined on an interval con-

taining both σ(a) and σ(b).
(3) There exists a sequence {un} in U(A) such that unbu∗

n n→∞−−−−→ c and c � a.

Finally, Eizaburo Kamei defined the notion of majorization and submajorization in finite fac-
tors (see [12]):

Definition 2.3. Let A be a finite factor with normalized trace tr. Given a, b ∈Asa , we say that a

is submajorized by b, and denote a ≺w b, if the inequality

α∫
0

ea(t) dt �
α∫

0

eb(t) dt

holds for every real number α, where ec(t) = inf{γ : tr(Ec[(γ,∞)]) � t} for c ∈ Asa . An equiv-
alent condition (see [11]) is that

sup
{
tr(ap): p ∈Pk

}
� sup

{
tr(bp): p ∈Pk

}
, 0 � k � 1,

where Pk = {p ∈ Asa: p2 = p and trp = k}. We say that a is majorized by b (and denote a ≺ b)
if a ≺w b and tr(a) = tr(b).

The following characterization of submajorization also appears in [12].

Proposition 2.4. Let A be a finite factor with normalized trace tr. Given a, b ∈Asa , the following
conditions are equivalent:

(1) a ≺w b.
(2) tr(g(a)) � tr(g(b)) for every non-decreasing convex function g defined on an interval con-

taining both σ(a) and σ(b).
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3. Jensen’s type inequalities

Throughout this section φ is a positive unital map from a C∗-algebra A to another C∗-al-
gebra B, f : I → R is a convex function defined on an open interval I and a ∈ Asa whose
spectrum lies in I . Note that the spectrum of φ(a) is also contained in I . As we mentioned in the
introduction, we cannot expect a Jensen’s type inequality of the form

f
(
φ(a)

)
� φ

(
f (a)

)
(2)

for an arbitrary convex function f without other assumptions. This is the reason why, in order to
study inequalities similar to (2) for different subsets of convex functions, we shall use the spectral
and submajorization (pre)orders, or we shall change the hypothesis made over B. Although most
of the inequalities considered in this section involve unital positive maps, similar results can be
obtained for contractive positive maps by adding some extra hypothesis on f .

3.1. Monotone convex and concave functions. Spectral preorder

In this section we shall consider monotone convex and concave functions. The following
result, due to Brown and Kosaki [5], indicates that the appropriate order relation for this class of
functions is the spectral preorder. Let A be a semi-finite von Neumann algebra, and let v ∈ A
be a contraction; then, for every positive operator a ∈A and every continuous monotone convex
function f defined in [0,+∞) such that f (0) = 0, it holds that

v∗f (a)v � f
(
v∗av

)
.

The following statement is an analogue of Brown and Kosaki’s result, in terms of positive unital
maps and monotone convex functions. The proof we give below follows essentially the same
lines as that in [5].

Theorem 3.1. If B is a von Neumann algebra, and f is monotone convex, then

f
(
φ(a)

)
� φ

(
f (a)

)
. (3)

Proof. Given α ∈ R, denote by {f > α} = {t ∈ R: f (t) > α}. We shall prove that there exists a
projection qα ∈A such that

Ef (φ(a))

[
(α,+∞)

] = Eφ(a)

[{f > α}] ∼ qα � Eφ(f (a))

[
(α,+∞)

]
.

We claim that Eφ(a)[{f > α}] ∧ Eφ(f (a))[(−∞, α]] = 0. Consider a unit vector η̄ ∈
R(Eφ(a)[{f > α}]). Since f is monotone we have that α < f (〈φ(a)η̄, η̄〉) and, using Jensen’s in-
equality for states, Eq. (1), we get α < 〈φ(f (a))η̄, η̄〉. On the other hand, if ξ̄ ∈
R(Eφ(f (a))[(−∞, α]]) is a unit vector, then α � 〈φ(f (a))ξ̄ , ξ̄ 〉. So, using Kaplansky’s formula,
we have

Ef (φ(a))

[
(α,+∞)

] = Ef (φ(a))

[
(α,+∞)

] − (
Ef (φ(a))

[
(α,+∞)

] ∧ Eφ(f (a))

[
(−∞, α]])

∼ (
Ef (φ(a))

[
(α,+∞)

] ∨ Eφ(f (a))

[
(−∞, α]]) − Eφ(f (a))

[
(−∞, α]]

� I − Eφ(f (a))

[
(−∞, α]] = Eφ(f (a))

[
(α,+∞)

]
. �

Remark 3.2. Note that we cannot infer from the above result a similar one for monotone concave
functions, because it is not true that a � b ⇒ −b � −a. However, using the same arguments a
similar result can be proved for monotone concave function.
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If φ(a) and φ(f (a)) are compact operators and f (0) = 0, Theorem 3.1 can be rephrased in
terms of the following interpretation of the spectral order:

Proposition 3.3. Let H be a Hilbert space. Let a, b ∈ L(H)+ be compact operators, and {λn}n�N

(respectively {μn}n�M ) the decreasing sequence of positive eigenvalues of a (respectively b),
counted with multiplicity (N,M ∈ N ∪ {∞}). Suppose that a � b. Then

(1) λm � μm for every m � min{N,M}.
(2) There exists a partial isometry u ∈ L(H) with initial space R(a) such that, if c = uau∗,

c � b and cb = bc.

Moreover, if dim(H) < ∞, then (2) holds for a, b ∈ L(H)sa , for some u ∈ U(H).

Proof. Given α > 0, let nα = max{m � N : λm > α} and mα = max{m � M: μm > α} (we take
nα = 0 if α � ‖a‖ and similarly for mα). By hypothesis

nα = trEa

[
(α,+∞)

]
� trEb

[
(α,+∞)

] = mα.

Taking α = λm − ε (for every 0 < ε < λm), one deduces that λm � μm. Let {ξn}n�N be an
orthonormal basis of R(a) of eigenvectors associated to the sequence {λn}n�N of a. Define in
a similar way, {ηm}m�M associated to {μm}m�M for b. Consider the isometry u :R(a) → R(b),
given by u(ξn) = ηn, n � N , and extend u to a partial isometry with keru = kera. Let c =
uau∗. Then cb = bc and c � b, since {ηm}m�N is an orthonormal basis of R(c) of eigenvectors
associated to {λn}n�N . If dimH = n < ∞ and a, b ∈ L(H)sa , we can include the eventual non-
positive eigenvalues to the previous argument, getting orthonormal basis of H, so that u becomes
unitary. �
Remark 3.4. It can be shown, by a slight modification of the proof of the previous lemma, that
item (2) still holds in case that b is diagonalizable but not compact.

Remark 3.5. In [7] Farenick and Manjegani stated a question that, in the particular case of L(H),
can be formulated in the following way: given a, b ∈ L(H)sa such that a � b, is there an isometry
v ∈ L(H) such that v∗bv � a? Proposition 3.3 gives a partial answer to this question, and the
next example shows that, in L(H), this answer is the best one, even if we restrict ourselves to
compact operators.

Example 3.6. Let B = {ξn}n∈N be an orthonormal basis of the separable Hilbert space H and
let b ∈ L(H)+ be the diagonal operator (w.r.t. B) with diagonal {2−n}n∈N. If s is the backward
shift (w.r.t. B), let a = s∗bs, i.e. aξ1 = 0 and aξn = 2n−1ξn for n � 2. Then, a � b because
tr[Ea(λ,∞)] = tr[Eb(λ,∞)] for every λ � 0. Suppose that there exists an isometry v ∈ L(H)

such that v∗bv � a. Then

〈
bv(ξ2), v(ξ2)

〉
�

〈
a(ξ2), a(ξ2)

〉 = 1

2
�⇒ v(ξ2) = ξ1.

Similarly, using that v is an isometry, it can proved that v(ξn) = ξn−1 for every n � 2. Therefore,
v = s which is not an isometry.
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3.2. Arbitrary convex functions

The following example, due to J.S. Aujla and F.C. Silva [3], shows that Theorem 3.1 may be
false if the function f is not monotone.

Example 3.7. Consider the positive map φ :M4 → M2 given by

φ

(
A11 A12
A21 A22

)
= A11 + A22

2
.

Take f (t) = |t | and let A be the following matrix

A =

⎛
⎜⎜⎝

−2 0 0 0
0 0 0 0

0 0 1 1
0 0 1 1

⎞
⎟⎟⎠ .

Then

φ
(
f (A)

) =
(

3/2 1/2
1/2 1/2

)
and f

(
φ(A)

) =
(

1/
√

2 0
0 1/

√
2

)
.

Therefore

rank
(
Eφ(f (A))

[
(0.5,+∞)

]) = 1 < 2 = rank
(
Ef (φ(A))

[
(0.5,+∞)

])
.

Nevertheless, a Jensen’s type inequality holds with respect to the usual order for every convex
function, if the map φ takes values in a commutative algebra B.

Proposition 3.8. If B is abelian, then f (φ(a)) � φ(f (a)).

Proof. For every character Γ of the algebra B, Γ ◦ φ is a state over the C∗-algebra A. Thus,
using Eq. (1) (Jensen’s inequality for states), Γ (f (φ(a))) = f (Γ (φ(a))) � Γ (φ(f (a))). �

Now, we shall prove a Jensen inequality for arbitrary convex functions, with respect to the
submajorization (pre)order.

Theorem 3.9. Suppose that B is a finite factor. Then

f
(
φ(a)

) ≺w φ
(
f (a)

)
. (4)

In order to prove this theorem, we need the following lemma.

Lemma 3.10. Let tr be a trace defined on B, and let b ∈ B. Then, there exist a Borel measure μ

defined on σ(b) and a positive unital linear map Ψ :B → L∞(σ (b),μ) such that:

(1) Ψ (f (b)) = f for every f ∈ C(σ(b)).
(2) tr(x) = ∫

σ(b)
Ψ (x)(t) dμ(t) for every x ∈ B.

Proof. First of all, note that for every continuous function g defined on the spectrum of b, the
map

g → tr
(
g(b)

)
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is a bounded linear functional on C(σ(b)). Therefore, by the Riesz’s representation theorem,
there exists a Borel measure μ defined on the Borel subsets of σ(b), such that for every continu-
ous function g on σ(b),

tr
(
g(b)

) =
∫

σ(b)

g(t) dμ(t).

Now, given x ∈ B+, define the following functional on C(σ(b)):

g → tr
(
xg(b)

)
.

Since for every y ∈ B+, tr(xy) = tr(y1/2xy1/2) � ‖x‖ tr(y), this functional is not only bounded
but also dominated by the functional defined before. So, there exists an element hx of
L∞(σ (b),μ) such that, for every g ∈ C(σ(b)),

tr
(
xg(b)

) =
∫

σ(b)

g(t)hx(t) dμ(t).

The map x �→ hx , extended by linearization, defines a positive unital linear map Ψ :B →
L∞(σ (b),μ) which satisfies conditions (1) and (2) because

tr
(
f (b)g(b)

) = tr
(
fg(b)

) =
∫

σ(b)

g(t)f (t) dμ(t) and

tr(x) = tr
(
x1(b)

) =
∫

σ(b)

1Ψ (x)(t) dμ(t) =
∫

σ(b)

Ψ (x)(t) dμ(t). �

Proof of Theorem 3.9. By Proposition 2.4, it is enough to prove that

tr
[
g
(
f

(
φ(a)

))]
� tr

[
g
(
φ
(
f (a)

))]
for every non-decreasing convex function g such that g(f (φ(a))) and g(φ(f (a))) are well de-
fined. Fix such a function g. Let Ψ :B → L∞(σ (b),μ) be the positive unital linear map given
by Lemma 3.10 for b = φ(a). Define the map

Φ :C
(
σ(a)

) → L∞(
σ(b),μ

)
by Φ(h) = Ψ

(
φ
(
h(a)

))
.

Then, Φ is bounded, unital and positive. Moreover, given h ∈ C(σ(a)),

tr
(
φ
(
h(a)

)) =
∫

σ(b)

Ψ
(
φ
(
h(a)

))
(t) dμ(t) =

∫
σ(b)

Φ(h)(t) dμ(t).

Then, using Proposition 3.8 and the fact that g is non-decreasing,

tr
(
g
[
f

(
φ(a)

)]) = tr
(
g ◦ f (b)

) =
∫

σ(b)

g ◦ f (t) dμ(t) =
∫

σ(b)

g
[
f

(
Φ(Id)

)]
dμ(t)

�
∫

σ(b)

g
[
Φ(f )(t)

]
dμ(t) =

∫
σ(b)

g
[
Ψ

(
φ
(
f (a)

))
(t)

]
dμ(t)

�
∫

σ(b)

Ψ
(
g
[
φ
(
f (a)

)])
(t) dμ(t) = tr

(
g
[
φ
(
f (a)

)])
,

which completes the proof. �
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Remark 3.11. Let C ⊆ B be C∗-algebras. A conditional expectation E :B → C is a positive
C-linear projection from B onto C of norm 1. The centralizer of E is the C∗-subalgebra of B de-
fined by BE = {b ∈ B: E(ba) = E(ab), ∀a ∈ B}. Following similar ideas as those in Lemma 3.10
and the proof of Theorem 3.9 it can be proved that, if φ(a) belongs to BE , then

E
(
g
[
f

(
φ(a)

)])
� E

(
g
[
φ
(
f (a)

)])
(5)

for every non-decreasing convex function g :J → R defined on some open interval J such that
f (I) ⊆ J . This fact is similar to Hansen and Pedersen’s results obtained in [9].

Remark 3.12. With slight modifications in their proofs (and using Theorem 4.2 below), Propo-
sition 3.8, and Theorems 3.1 and 3.9 can be restated for a contractive map φ (instead of unital),
if the function f satisfies that f (0) � 0.

4. The multi-variable case

In this section we shall be concerned with the restatement, in the multi-variable context, of
several results obtained in Section 3.2. For related results, see [10,14].

4.1. Multivariated functional calculus

Let A be a unital C∗-algebra and let a1, . . . , an be mutually commuting elements of Asa . If
B = C∗(a1, . . . , an) denotes the unital C∗-subalgebra of A generated by these elements, then B
is abelian. So there exists a compact Hausdorff space X such that B is ∗-isomorphic to C(X).
Actually X is (up to homeomorphism) the space of characters of B.

Recall that in the case of one operator a ∈ Asa , X is homeomorphic to σ(a). In gen-
eral, characters of the algebra B are associated in a continuous and injective way to n-tuples
(λ1, . . . , λn) ∈ ∏n

i=1 σ(ai) by the correspondence γ �→ (γ (a1), . . . , γ (an)). Thus X is homeo-
morphic to its image under this map, which we call joint spectrum and denote σ(a1, . . . , an).

Let f ∈ C(σ(a1, . . . , an)). Denote by f (a1, . . . , an) ∈ C∗(a1, . . . , an), the element that cor-
responds to f by the above ∗-isomorphism. Note that by Tietze’s extension theorem we can
consider functions defined on

∏n
i=1 σ(ai) ⊆ R

n without loss of generality. Therefore the associ-
ation f �→ f (a1, . . . , an) is a ∗-homomorphism from C(

∏n
i=1 σ(ai)) onto B, which generalizes

the functional calculus of one variable.

4.2. Jensen’s type inequality in several variables. Submajorization

Throughout this section A and B are two C∗-algebras and φ :A → B is a positive unital
map. We fix U , an open convex subset of R

n, a convex function f :U → R and a mutu-
ally commuting n-tuple a = (a1, . . . , an) ∈ An

sa such that
∏n

i=1 σ(ai) ⊆ U . We denote �φ(a) =
(φ(a1), . . . , φ(an)).

Remark 4.1. Let K ⊆ U be compact. Then, there is a countable family of linear functions
{fi}i�1 such that f (x) = supi�1 fi(x) for each x ∈ K .

Theorem 4.2. Suppose that φ(f (a)), φ(a1), . . . , φ(an) are also mutually commuting. Then

f
(
φ(a1), . . . , φ(an)

) = f
( �φ(a)

)
� φ

(
f (a)

) = φ
(
f (a1, . . . , an)

)
. (6)

Moreover, if �0 = (0, . . . ,0) ∈ U and f (�0) � 0 then Eq. (6) holds even if φ is positive contractive.
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Proof. Denote by B̂ the abelian C∗-subalgebra of B generated by φ(a1), . . . , φ(an) and φ(f (a)).
On the other hand, let {fi}i�1 be the linear functions given by Remark 4.1. Since f � fi (i � 1)
we have that f (a) � fi(a) and therefore

φ
(
f (a)

)
� φ

(
fi(a)

) = fi

( �φ(a)
)
, (7)

where the last equality holds because fi is linear. As fi( �φ(a)) ∈ B̂ for every i � 1 and also
φ(f (a)) ∈ B̂, which is abelian,

φ
(
f (a)

)
� max

1�i�n
fi

( �φ(a)
) =

(
max

1�i�n
fi

)( �φ(a)
)
.

Now, since max1�i�n fi n→∞−−−−→ f uniformly on compact sets, we can deduce from Dini’s theo-
rem that φ(f (a)) � f ( �φ(a)). If φ is contractive and f (0) � 0, the functions fi also satisfy that
fi(0) � 0 and we can replace Eq. (7) by φ(f (a)) � φ(fi(a)) � fi(φ(a)). Then we can repeat
the same argument to get the desired inequality. �

The following results are the multi-variable versions of Lemma 3.10, Remark 3.11 and The-
orem 3.9. The proofs of those results were chosen in such a way that they still hold in the
multi-variable case without substantial differences.

Lemma 4.3. Let ϕ be a state defined on B, and let b = (b1, . . . , bn) ∈ (Bϕ)n be an n-tuple with
mutually commuting entries. Then, there exist a Borel measure μ defined on K := σ(b) and a
positive unital linear map Ψ :B → L∞(K,μ) such that:

(i) Ψ (f (b)) = f for every f ∈ C(K).
(ii) ϕ(x) = ∫

K
Ψ (x)(t) dμ(t) for every x ∈ B.

Theorem 4.4. Let E :B → C be a conditional expectation onto the C∗-subalgebra C. If
φ(a1), . . . , φ(an) ∈ BE and are mutually commuting, then

E
(
g
[
f

( �φ(a)
)])

� E
(
g
[
φ
(
f (a)

)])
(8)

for every convex increasing map g :J → R such that f (I) ⊆ J .

Theorem 4.5. If B is a finite factor and φ(a1), . . . , φ(an) are mutually commuting, then
f ( �φ(a)) ≺w φ(f (a)).

5. The finite dimensional case

In this section we rewrite the already obtained Jensen’s inequalities in the finite dimensional
case. We use the notations Mn = L(Cn), Msa

n for the space of selfadjoint matrices, M+
n for

the cone of positive matrices and U(n) the unitary group of Mn. Given A ∈ Msa
n , by means

of λ(A) = (λ1(A), . . . , λn(A)) we denote the eigenvalues of A counted with multiplicity and
arranged in non-increasing order. Now, we recall the aspect of the spectral preorder and ma-
jorization in Msa

n

5.1. Let A,B ∈Msa
n .

(1) By Proposition 3.3, the following conditions are equivalent
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(a) A � B .
(b) There is U ∈ U(n) such that (UAU∗)B = B(UAU∗) and UAU∗ � B .
(c) λi(A) � λi(B) (1 � i � n).

(2) Straightforward calculations show that, given a selfadjoint matrix C, the functions eC(t)

considered in the definition of majorization satisfy that eC(t) = λk(C) for k−1
n

� t < k
n

,
1 � k � n. Therefore, A ≺w B if and only if λ(A) ≺w λ(B) (as vectors).

In the next proposition, we summarize the different versions, in this setting, of Jensen’s in-
equality obtained in Section 3.

Proposition 5.2. Let A be an unital C∗-algebra and φ :A → Mn a positive unital map. Suppose
that a ∈Asa and f : I → R is a function with σ(a) ⊆ I .

(1) If f is monotone convex, λi(f (φ(a))) � λi(φ(f (a))), for 1 � i � n.
(2) If f is convex,

∑k
i=1 λi(f (φ(a))) �

∑k
i=1 λi(φ(f (a))), 1 � k � n.

If 0 ∈ I and f (0) � 0 the above inequalities also hold for contractive positive maps.

Remark 5.3. Using the results of Section 4, one can get a multivariate version of the second
inequality of Proposition 5.2.

Remark 5.4. In a recent work [2], Aujla and Bourin prove an equivalent version (for concave
functions f ) of both inequalities of Proposition 5.2 (with an essentially different proof) getting
several interesting inequalities as a consequence (see also the previous version of our work [1],
which includes Proposition 5.2).

Example 5.5. Given two n × n matrices A = (aij ) and B = (bij ), we denote A ◦ B = (aij bij )

their Schur’s product. It is a well-known fact that the map A �→ A ◦ B is completely positive for
each positive matrix B , and if we further assume that I ◦B = I then it is also unital. So the above
inequalities can be rewritten taking φ :Mn → Mn given by φ(A) = A ◦ B where B satisfies the
mentioned properties (see also [2]).

Example 5.6. Let A ⊆ L(H) be a C∗-algebra. Take φ :Ar → Mn given by φ(A1, . . . ,Ar) =∑r
i=1 W ∗

i AiWi , where W1, . . . ,Wr ∈ L(Cn,H) are bounded operators such that∑r
i=1 W ∗

i Wi = I . Since this map is positive, one can apply Proposition 5.2 to get new versions
of the inequalities appearing in [6,9].
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