ELSEVIER

Available oqline at www.sciencedirect.com
“=.” ScienceDirect

Int. J. Human-Computer Studies 68 (2010) 209-222

International Journal of
Human-Computer
Studies

www.elsevier.com/locate/ijhcs

Building respectful interface agents

Silvia Schiaffino®®*, Marcelo Armentano™®, Analia Amandi®®

AISISTAN Research Institute, Fac. Cs. Exactas, UNCPBA Campus Universitario, Paraje Arroyo Seco, Tandil 7000, Argentina
YCONICET, Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina

Received 15 May 2008; received in revised form 11 November 2009; accepted 11 December 2009
Communicated by C. Sierra
Available online 23 December 2009

Abstract

To provide personalized assistance to users, interface agents have to learn not only a user’s preferences and interests with respect to a
software application, but also when and how the user prefers to be assisted. Interface agents have to detect the user’s intention to
determine when to assist the user, and the user’s interaction and interruption preferences to provide the right type of assistance without
hindering the user’s work. In this work we describe a user profiling approach that considers these issues within a user profile and a
decision making approach that enables the agent to choose the best type of assistance for a given user in a given situation. We also
describe the results obtained when evaluating our proposal in the tourism domain, and we compare these results with some previous ones

in the calendar management domain.
© 2009 Elsevier Ltd. All rights reserved.

Keywords: User-agent interaction; User profiling; Interface agents; Plan recognition

1. Introduction

Research on Interface Agents has mainly concentrated
on learning users’ habits, preferences and interests to
provide them personalized assistance with the tasks they
perform with software applications. However, few efforts
have been directed towards learning how to best assist the
user, that is providing the right help, at the right time, and
in the right way.

A user can perform different tasks with a given software
application. Thus, it is very important for an interface
agent to know, at every moment, the task the user is
carrying out because it gives the context in which the user is
working. By taking this context into account, the agent
may infer the user’s intention and try to collaborate with
him/her in a respectful way. In addition, if the agent knows
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the user’s intention, it will avoid interrupting him/her at an
improper moment. Users generally do not want to be
interrupted while working on an specific task, unless this
interruption is strongly related to the task they are
performing, or it has a high priority for them (Rudman
and Zajizek, 2006). Also, users differ in their preferences
about how and when they want to be assisted, and even a
single user may differ in the type of assistance he/she
prefers for different contexts (Schiaffino and Amandi,
2004, 2006; Serenko et al., 2007).

Consider for example the following situation. An
employee of a tourist agency has the intention of arranging
a tour for a client named John Smith. To achieve this, he/
she has to perform a set of tasks in the application, such as
selecting John Smith from the list of clients, creating a new
tour, entering the location, the type of accommodation, the
estimated dates, the tour price, and finally sending an email
to John Smith with the proposal. The sooner the agent
detects the user’s intention, the better it will assist him in
accomplishing his intention. In our approach, we use Plan
Recognition to detect the user’s intention. Plan recognition
aims at identifying the goal of a subject based on the
actions he/she performs (Kautz, 1991). The goal usually
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has one or more associated plans that can predict the
subsequent user behavior. Furthermore, the user’s interac-
tion history can be used to refine the context that he/she is
implicitly setting, by considering not only the possible
tasks that he/she will probably perform next, but also
the attributes of those tasks. Thus, an interface agent
can observe the user while he/she is working with an
application to detect each action performed on the
graphical user interface and determine what the user’s
intention is.

Following our example, once the agent has detected that
the user wants to create a tour for John Smith, it can use
the information contained in the user profile to assist him.
For example, the agent can suggest the employee the
preferred type of accommodation or the means of
transport for John Smith, it can complete these fields
automatically, and offer to send an email to John Smith.
However, different users may have different preferences
about the type of assistance they welcome from an inter-
face agent. For example, some users may prefer the agent
to automatically complete all the tasks it can, while
others just prefer to receive suggestions (Schiaffino and
Amandi, 2004). Moreover, this information is strongly
dependent on the situation in which the agent is about
to assist the user. In our approach, the information needed
to determine what type of assistance a user wants to
receive in a given situation is contained in the user
interaction profile. This profile also comprises the expected
modality of the assistance. In a certain context the user
might want just a notification containing a complaint from
a client while in a different context the user might prefer an
interruption.

In summary, to assist a user successfully, interface agents
have to detect: a user’s intentions, learn a user’s preferences
and habits with respect to a software application, and a
user’s interaction and interruption preferences. In this
work, we propose a profiling approach to acquire the
different components of the user profile mentioned before,
and a decision making algorithm that uses this profile to
decide how to best assist a user.

Our profiling approach uses, first, plan recognition to
detect a user’s intentions. Then, we use two user profiling
methods we developed, namely WATSON and IONWI, to
learn a user’s interaction and interruption preferences
(Schiaffino and Amandi, 2006). Finally, we combine the
different components of the user profile in a decision
making algorithm that enables an interface agent to decide
how to best assist a user in a given situation.

The rest of the work is organized as follows. Section 2
presents an overview of our proposed approach. Section 3
describes how to detect a user’s intention using plan
recognition. Section 4 describes how to learn a user’s
interaction and interruption preferences. Section 5 presents
the results obtained when evaluating our approach in the
tourism domain. Then, Section 6 analyzes some related
works. Finally, Section 7 presents our conclusions and
future work.

2. Proposed approach

A user profile typically contains information about a
user’s interests, preferences, behavioral patterns, knowl-
edge, and priorities, regarding a particular domain.
However, such information is not enough to personalize
the interaction with a user. The user’s intentions with a
software application and his/her interaction preferences
play a relevant role in user-agent interactions. To obtain
the components of our wuser interaction profile, we
developed two profiling methods: WATSON and IONWI.
WATSON learns a user’s assistance preferences, that is,
when a user wants a suggestion, a warning, an automated
action or no assistance. JONWI learns a user’s interruption
preferences, that is, when a user prefers an interruption and
when a notification. To achieve their goals, these user
profiling methods analyze the user’s interaction with the
agent recorded when observing the user’s behavior, and
consider the feedback provided by the user after the agent
assisted him/her. An overview of our proposal is shown in
Fig. 1. In the following sections we describe our approach
in detail.

2.1. Our user profile

In our approach, a user profile should contain informa-
tion about the user’s intentions with a software application,
and about the user’s interruption and assistance prefer-
ences (see Fig. 1). We therefore add to the classic user
profile' information about the situations or contexts in
which the user: requires a suggestion to deal with a
problem, needs only a warning about a problem, expects an
action on his or her behalf, does not want the agent’s help.
In turn, we include in the user profile the situations or
contexts in which the user: accepts an interruption from the
agent, or wants a notification rather than an interruption.

Thus, our user profile comprises:

User Profile = Classic UserProfile+ User Intentions
+ UserInteraction Profile
User Interaction Profile = UserAssistance Preferences
+ UserlInterruption Preferences

We define the user intentions as the set of all the possible
intentions the user can be trying to achieve, each of them
with an associated certainty:

User Intentions = {{ User intention, Certainty )}

We define the assistance preferences as a set of problem
situations or contexts with the required assistance action
and a parameter (certainty) indicating how sure the agent is

"We call classic user profile to the profile considered thus far for most
interface agents, that is, without interruption and interaction preferences.
User intentions have been considered as part of user profiles in the
literature (Horvitz et al., 1998), but we separate them explicitly since they
are an important part of our proposal.
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Fig. 1. Overview of our proposed approach.

about the user wanting that assistance action in that
particular situation:

User Assistance Preferences = { { Situation,
Assistance Action, Certainty )}

The situation describes the problem situation, situation
of interest or assistance opportunity underlying the
interaction between the user and the agent. In a tourism
application, some situations might be: the user is creating a
tour for a given client, or the client himself is asking for
information about a tour; or the user is processing a
complaint submitted by a certain client. Each situation is
described by a set of attributes or features, and each
attribute can take a predefined set of values. Formally, a
situation is defined as situation = (feature;, value;)+, where
valuej; is the j-th value feature i can take. For example, in
the case of booking a tour, the situation will be described
by the tour features such as the type of accommodation,
the location, the duration, the cost, among other char-
acteristics.

The agent action associated with a given situation may
be a warning, a suggestion, an action on the user’s behalf,
or no assistance action at all. The certainty degree can take
a value between 0 and 1.

Assistance Action = warning|suggestion|action|noaction

Certainty €[0..1]

We define the interruption preferences as a set of
situations with the preferred assistance modality (interrup-
tion or no interruption). They might also contain the type
of assistance action to execute. A parameter indicates how
certain the agent is about this user preference:

User InterruptionPreferences = {{ Situation,
[AssistanceAction), Assistance Modality, Certainty )}
Assistance Modality = interruption|notification
Certainty ¢[0..1]
In the components mentioned above, how the certainty
value is obtained, depends on the underlying machine
learning algorithm. As we will explain later, in the case of

association rules it is a combination of support and
confidence, which are parameters of association rule
mining algorithms; in the case of Bayesian networks, it is
defined by probability values.

Following, there are two examples of user interaction
profile components in a tourism application. The first
indicates that, when the user is creating a tour and the
client is John Smith, the user requires a suggestion about
some tour attributes with a certainty degree of 0.7:

assist-pref ({(type, createtour), (client,
JohnSmith)}, suggestion, 0.7)

The second one expresses that, when an email arrives
with a complaint of a ““vip” customer, the user wants to be
interrupted no matter the task he/she is carrying out, with a
certainty degree of 0.8:

int-pref ({(type, complaint), (customertype, vip)},
warning, interruption, 0.8)

In the first example, the possible user’s intentions could
be:

{{ Create tour, 0.9, Write email, 0.4,
{ Book tour, 0.3}

2.2. Proposed decision making algorithm

The most widely used approach to select an agent action
in the interface agent area is the one proposed in Maes
(1994). In this confidence-based approach, interface agents
have generally three possibilities when they want to assist a
user: executing a task autonomously, suggesting to the user
what to do, and doing nothing. Agents use two threshold
values to take decisions, which are established by the user
to control the agents behavior: do-it threshold and tell-me
threshold. If the confidence value associated with an agent
action is smaller than the tell-me threshold the agent does
nothing; if the confidence value is greater than the tell-me
threshold but smaller than the do-it threshold, the agent
tells the user what it thought he/she would do and it waits
for confirmation to automate the action; and if the
confidence value is greater than the do-it threshold the
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agent executes the task autonomously on the user’s behalf,
sending him/her a report. The do-it threshold is higher than
the tell-me threshold. If the agent does not execute an
action, then the user has to deal with the situation at hand,
and the agent observes his/her behavior to learn from it.

The confidence-based approach has several problems.
The main one is that confidence values do not consider the
way in which the user wants to interact and work with his/
her agent. These agents do not take into account when the
user wants each type of assistance action. Moreover,
threshold values are generally set by the user and they have
fixed values. Thus, if the agent wants to modify them
according to the user’s behavior, it cannot do it. Finally,
the same thresholds are used for every agent action and
every problem situation (context) or situation of interest.

To solve these problems we propose the algorithm
shown in Algorithm 1. The inputs for this algorithm are the
actions the user executed in the application observed by the
user, and the user profile. The output of the algorithm is a
decision that consists of the type of the assistance action
(warning, suggestion, action on the user’s behalf), the
content of the assistance action (what to do or what to
suggest), and the modality of the assistance action
(interruption or notification). First, the algorithm tries to
determine the user’s intentions with the software applica-
tion in order to detect a situation in which the user might
need assistance. We use a plan recognition algorithm to
achieve this goal. Then, given such a situation, the agent
looks in the user profile for a profile item containing that
situation. To make a decision, the agent first searches the
user profile looking for a profile item involving the
situation at hand. If no profile item is found for this
situation, then the agent cannot provide assistance to the
user because it does not have information to do it. Thus, no
assistance action is executed. Another alternative could be
warning the user about the problem.

If a profile item is found, then the agent has information
to assist the user. Thus, it has to decide the type of the
assistance to be provided. To achieve this goal, the agent
looks into the user interaction profile for an assistance
preference containing the situation at hand or a similar
situation. If such an assistance preference is not found,
then the confidence-based decision making algorithm is
used. This algorithm has to be used because the agent does
not know the user’s assistance or interruption preferences
for the situation it is dealing with. Thus, the algorithm used
currently by interface agent has to be used.

On the other hand, if such an assistance preference is
found the agent retrieves from this item the type of the
assistance action, the assistance to be provided, and the
assistance modality associated with the situation and the
current user task. Then, the confidence on the action is
computed. The confidence is compared against the
corresponding threshold value, one for each action type.
If the confidence value is greater than the threshold value,
then the assistance action is correct and it will be executed.

However, if the confidence value is smaller than the
threshold value, then we have to analyze what the user
wants. If the user is risky, that is if he wants the action
despite it has a low confidence value, then the action
contained in the user assistance requirement is performed.
Otherwise, a different action is executed. If the action is an
action on the user’s behalf but the confidence on the action
is smaller than a threshold value 1, then the agent will
make a suggestion. If the action contained in the assistance
requirement is a suggestion and its confidence value is
smaller than 73, the agent will only make a warning.

Algorithm 1. Decision making algorithm

Input: The user profile UP composed by the standard user
profile SUP, the user interruption preferences UIP
and the user assistance requirements UAR; a set of
observed actions Actions

Output:The agent has chosen a type of action to deal with
Sit: warning W, suggestion S, action A or no action
N; a modality: interruption / or no interruption
NI; and a content. These three items constitute the
decision Dec

1: intentions < plan-recognition (Actions)
2: Sit « get-most-probable-intention (intentions)
3: compute Conf (Sit)
4: if Conf(Sit) > t,then
5 Dec.content — select from SUP a profile item
containing Sit
6: if Dec.content #(then
7: AR« select from UAR a profile item containing
Sit
8: if AR+ (Jthen
9: type < AR.agentaction
10: if risky user then
11: Dec.action «+ type
12: else
13: if type = action and Conf (Dec.content) > t,then
14: Dec.action — A
15: else if (Conf (Dec.content) < t;) or
(type = suggestion and
Conf (Dec.content) > 13)then
16: Dec.action< S
17: else if (zype = warning) or
(Conf (Dec.content) < 13)then
18: Dec.action— W
19: else
20: Dec.action— N {type = noaction}
21: end if
22: end if
23: else
24: Dec.action+ Call confidence-based decision
making algorithm
25: end if
26: IP < select from UIP a profile item containing Sit

27: if 1P # (then
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28: Dec.modality < IP.modality

29: else

30: Dec.modality < notification

31: end if

32: else

33: Dec.action— N or W

34: end if

35: else

36: Dec.action— N {the agent considers the situation is
not worth handling}

37 end if

38: return Dec

An important issue interface agents developed thus far
do not consider in their action selection algorithms is sow
to provide assistance to the user. Once the agent has
selected which action to perform it has to decide whether to
interrupt the user or not, in order to provide him
assistance. Thus, it looks for an interruption preference
containing the situation and, preferably, also containing
the current user task. If such a preference exists, the agent
retrieves the modality associated with the situation-task
pair or with the situation only. If no interruption
preference exists, the agent provides him/her assistance
without interrupting his work, letting him decide when to
pay attention to that assistance.

3. Detecting a user’s intentions

Plan recognition can be used to infer the user’s intentions
based on the observation of the tasks the user performs in
the application. Plan recognizers take as inputs a set of
goals the agent expects the user to carry out in the domain,
a plan library describing the way in which the user can
reach each goal, and an action observed by the agent. The
plan recognition process itself, consists in foretelling the
user’s goal, and determining how the observed action
contributes to reach it.

There are two main aspects that make classical
approaches to plan recognition unsuitable for being used
by interface agents. First, the agent should deal with
transitions and changes in the user’s intentions. The agent
will usually not be certain about the moment in which the
user starts a new plan to achieve a new goal. Classical
approaches do not consider this problem and they restrict
the plan recognition process to only one session that starts
with the first observed action and ends when the algorithm
recognizes the user’s intention. In an interface agent
environment the user not only may start pursuing new
goals in the application with no preplanned behavior, but
also he/she may change his/her intention without complet-
ing the previous one. Those approaches that consider this
problem restrict the memory of the plan recognizer so that
it only considers the most recent tasks performed by the
user, or it considers each task for only a fixed interval of
time and then they are completely disregarded.

Second, in the interface agents approach a user’s
preferences have a fundamental role and should be
considered in the plan recognition process. The reason
for this is that the behavior of the user in a specific
situation is usually determined by his/her preferences
related to that situation. In this context, a situation is
described by the information the user is handling to achieve
his/her intention. In the calendar scheduling domain, for
example, the situation related to the addition of a new
event may be described by its date, time, participants,
place, and organizer. These domain variables strongly
influence the user’s behavior. For instance, if the user adds
a new event that takes place during his/her working hours,
there is a high probability that the event will take place at
the office.

We propose Bayesian Networks (Jensen, 2001) as a
knowledge representation capable of capturing and model-
ing dynamically the uncertainty of user-agent interactions.
We represent the set of intentions the user can pursue in the
application domain as an Intention Graph. An Intention
Graph is materialized as a Bayesian Network and
represents a context of execution of tasks. The context is
viewed as the set of tasks that the user has performed
recently, and will influence the certainty that the agent has
in any given intention that the user may be pursuing. The
number of tasks taken into account is variable and depends
on a function we will explain later in this section. Bayesian
networks are directed acyclic graphs representing both the
conditional dependencies and independencies between
elements in the problem domain. The knowledge is
represented by nodes called random variables and arcs
representing the causal relationships between variables.
Each variable has a finite set of mutually exclusive states.
Nodes without a parent node have an associated prior
probability table. On the other hand, the strengths of the
relationships are described using parameters encoded in
conditional probability tables.

Bayesian networks are used for calculating new prob-
abilities when some particular information becomes avail-
able. This information is called evidence. In our case, we
will have new evidence every time the user performs a task
in the software application. Therefore, evidence will be in
the form AddContact=true meaning that the user per-
formed the AddContact task. By making use of Bayesian
networks probabilistic inference, we will be able to know,
having as evidence the set of tasks performed by the user,
the probability that the user is pursuing any given intention
modeled by the Intention Graph. Moreover, if the user
explicitly declares his/her intentions, we will be able to
probabilistically assess the tasks he/she has to perform to
achieve his/her goal. In the following section we describe
the concept of Intention Graph.

3.1. Intention graph

In our Intention Graph variables correspond to goals
that the user can pursue in the application domain and to
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tasks that the user can perform in the application to
achieve those goals. The two possible states of these
variables are true and false. A true value in a variable
representing a goal indicates that the user is pursuing that
goal. On the other hand, a true value in a variable
representing a task indicates that the user performed that
task in the application. We call certainty of an intention the
probability of the corresponding variable being in a true
state. Notice that we will not have direct evidence about the
goal the user is pursuing unless the user makes an explicit
declaration of his/her intention. Evidence on a task node
will be set when the user interacts with a widget in the
application GUI that is associated to the execution of that
task. Our Intention Graph includes a third kind of
variable: context variables. This kind of variables will be
used to personalize the intention detection process by
learning new relations that may arise between the attributes
of the tasks performed by the user and the intention nodes
in the intention graph.

For example, in a tourism application, the user can select
a tour with the objective of creating a package including
that tour, inviting a friend to make that tour or with the
objective of making a claim, as shown in the Intention
Graph presented in Fig. 2. The Intention Graph
constructed manually by a domain expert will allow the
agent to rank which of the three goals is more probable,
given that the user selected a tour in the application.
However, the information of the selected tour can be
relevant in discerning which goal the user is pursuing.

To consider this information, we introduce to the
definition of our Intention Graph, the concept of traceable
nodes. A traceable node is a node in which we want to
register the values taken by some attributes of the
corresponding task performed by the user with the aim of
adding new variables that represent the context in which
the user performs that task, and to find new relations
between these variables and the nodes in the Intention
Graph. In the example above, the task corresponding to

CreatePackage

True 49,397
False 50,602

True 54,700
False | 45.299

the selection of a tour is a traceable node. The designer of
the Intention Graph should decide which attributes of this
task are of interest (for example, the destination, the season
and the cost of the tour) for which set of intentions (in the
example, creating a package including that tour, inviting a
friend to make that tour or making a claim about that
tour).

According to the values taken by the variables repre-
sented by these traceable nodes, probabilities in the
Intention Graph will be updated, as described in the
following section.

3.2. Probability adaptation

Every time the user performs a task corresponding
to a traceable node, the agent will observe the values
taken by the attributes of the task (for example, the
selected tour has destination Rome and its cost is
expensive). Then, the agent will continue observing the
user until it can infer what his/her intention(s) are and will
save the experience in an interaction history. Each
experience will be in the form: {attribute,,attribute,, ...,
attribute,, intentiony, intention,, . . . , intentiony » , where
attribute; is the value taken by the attribute; and
intention; is true if the agent infers that the user was
pursuing intention;, or false otherwise. This database of
experiences is then used by the agent to run K2 batch
learning algorithm (Cooper and Herskovits, 1992) to find
relations between the attributes of the traceable node
themselves, and between the attributes and the intentions
in the Intention Graph. K2 algorithm starts with a network
without arcs, and assumes that nodes are sorted to prevent
cycles. In each iteration, for each variable X; the algorithm
adds to its set of parents II; the node which order is
previous to it and that it increments the quality of the
network according to the quality metric selected. The
process is repeated until the quality is not incremented
(i.e. the increment in quality is not greater than a certain

WriteMail
MakeClaim

True 30,000
False 70.0

True 47.603
False 52,396

o SelectTour y
ChangeDestination OpenClaimForm SendClamEorn
T 5§1.232 True [EEIEER True [85.231
rue " rue .
False (19,394 True [53.298
False '48.767 False 34,768 Faise BEO1L
EnterEmail WriteText
SelectModalit EnterReason
8 True 60,345 P True (41559
True [R59 False 39,654 False |58:430 True ES71
False 44,400 False 49.628

Fig. 2. Example of an intention graph.
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minimum value) or it ends up in a complete network. The
maximum number of parents for each variable can be also
limited in the searching process.

Next, EM (Lauritzen, 1995) parametric learning algo-
rithm is run to learn the associated probabilities of the
Bayesian Network learnt by K2. In each step EM estimates
the missing values to complete the dataset. This estimation
is done using the values of the variables that were observed.
EM algorithm, is an iterative method which alternates
between performing an expectation (E) step, which
computes an expectation of the log likelihood with respect
to the current estimate of the distribution for the latent
variables, and a maximization (M) step, which computes
the parameters which maximize the expected log likelihood
found on the E step. These parameters are then used to
determine the distribution of the latent variables in the next
E step.

Fig. 3 shows an example of a learned network for the
example we are describing. In this machine-learned
Bayesian network, variables representing attributes are
incorporated to the network as a new kind of variables,
context nodes (with a gray label in the figure), and
variables representing intentions as intention nodes
(with a black label in the figure). The network resulting
from the running of learning algorithm is then merged with
the Intention Graph to incorporate this knowledge to the
detection of the user’s intention.

When the intention graphs are constructed, the condi-
tional probabilities chosen by the designer might not be
accurate to every future user of the application. Further-
more, when the user uses the application, new situations
are observed and it is desirable that the agent could be able
to learn about them. To adapt the conditional probabilities
of the nodes in the Intention Graph, we follow the
statistical on line learning approach presented in Jensen
(2001) called Fractional Updating. As the user interacts
with the application, the agent remembers the tasks

performed by the user. When the agent infers that the user
is pursuing a certain goal, it adapts the probabilities of the
intention graph to reflect this new experience. The agent
will believe that the user has already completed the current
goal(s) when a certain threshold is exceeded. This threshold
should be empirically determined for each application
domain.

3.3. Fading evidence

Finally, as stated in Section 2, most of previous plan
recognition approaches do not consider the uncertainty
related to the moment in which the user starts a new plan
to achieve a new goal. Those which consider this issue limit
the memory of the plan recognizer by making evidence to
be present in a fixed interval of time and then completely
disregarding it. We take a different approach in which
evidence is gradually forgotten.

In Bayesian networks terms, evidence is a collection of
findings on variables. A finding may be hard or soft. A
hard finding specifies the value a variable takes. Findings
on the values taken by the variables introduced before are
of this kind. A soft finding, on the other hand, specifies the
probability distribution of a variable. Hard evidence is a
collection of hard findings and Soft evidence is a collection
of soft findings. We adopt the concept of soft evidence to
fade the evidence we entered to the Bayesian network as
the user performs further tasks. To do so, we use a fading
function to gradually forget the tasks performed by the
user.

When the agent observes the execution of a task ¢, it sets
a hard evidence in the intention graph, that is to say that we
know that the variable corresponding to task t took a
“true’ value with 100% of certainty: P(¢ = true) = 1.

However, as the user performs subsequent tasks, we
gradually ““forget” of past observations, reducing the
likelihood of the evidence we have so far, according to a

Beds Cost Lodging
Triple 34.477 cheap 56,597 3 24.580
Double 43.645 1_—_expensive 54,286 hostel 18.669
Single |8.0852 moderate  19.115 Season 1 19,290
Suite 13,791 summer 4,902 4 22,438

autum | 44,439 9 =020
Destination spring  [0.442
Fortaleza 10,929 winker  [§0.214 Visited
Milan 9.7609 false 58,511
Mcndozo 1,0793 true 41,488
Rome 12,211
BuenosAires 35.176
Cordoba 10,751
i S CreatePackage InviteFriend
Batiloche 3.3494 false  36.843 false 43,195 false '67.838 True | 30.000
btrue 63,156 true | 5G.004 lrue  52.161 Fdlse 70,0

Fig. 3. Example of a Bayesian network built from data.
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fading function F(-), as shown in Eq. (1).
P(t = true) = Pprep(t = true)—F(-) (1)

That is, the current probability that task ¢ was performed
P(t = true) is computed by subtracting from the previous
probability assigned to task ¢ Pp..(t=1true) a value
assigned by the fading function F(-). The use of a
probability distribution to set evidence is known as soft
evidence. Evidence is faded according to this fading
function until it reaches its original value, that is until the
probability of a given node becomes less than the value
that it would have if we would not have observed the
execution of the corresponding task in the application.

Fading functions can be any function that, given the
Intention Graph and the evidence on tasks performed so
far, decrements the certainty of the evidence gradually
according to some heuristic (Liu et al., 2007). For example,
we can decrement current evidence by a fixed factor
0<A4<1 every time the user performs a task in the
application. This way, for all evidenced nodes #; we will
update the probability distribution of its evidence accord-
ing to Eq. (2)

P(t; = true) = Pprep(t; = true)—A (2)

This simple fading function will allow the agent to
disregard, after some actions performed by the user, a
previously performed noisy action or a previously pursued
goal. This function, however, might have the problem of
rapidly forgetting evidence in tasks that actually contribute
to the current goal of the user. This problem can be
overcome using a more sophisticated function that, for
example, keeps almost intact the evidence of some number
of tasks and then quickly decrement up to the original
value of the node (without evidence).

Allowing to gradually forget past observation, the agent
not only would be able to manage changes in the goal of
the user, but also will allow it to forget the execution of
noisy tasks, that are tasks that do not belong to the main
goal the user is pursuing. For example, in the tourism
application, the user can check the currency exchange rate
for its own sake, and not because it is part of the plan the
user is pursuing in that moment.

4. Learning a user’s interaction and interruption preferences

To learn a user’s interaction and interruption prefer-
ences, the information obtained by observing a user’s
behavior is recorded as a set of user-agent interaction
experiences. An interaction experience Ex = {Sit, Act,
Mod, UF,E,datey is described by six arguments: a
situation Sif that originates an interaction; the assistance
action Act the agent executed to deal with the situation
(warning, suggestion, action on the user’s behalf); the
modality Mod that indicates whether the agent interrupted
the user or not to provide him/her assistance; the user
feedback UF obtained after assisting the user; an evalua-

tion E of the assistance experience (success, failure or
undefined); and the date when the interaction took place.
The situation, assistance action and modality were already
defined in Section 2.1.

The user feedback can be explicit (direct) or implicit
(indirect), as well as positive or negative. It is explicit when
the user explicitly evaluates the agent’s actions using some
mechanisms provided by a user interface. It is implicit
when the agent has to observe the user’s actions after it has
assisted him in order to obtain the feedback. In turn, the
user can also explicitly state some interaction preferences.
However, asking the user when it is convenient to interrupt
him or when he needs a suggestion instead of a warning
may be not a viable solution, since he probably does not
know what to answer and he may not want to spend time
providing this information. In this work we will not
consider that the agent can obtain information about the
user from other agents. Although two users may have
similar interests, they would certainly not interact with
their agents in the same way. The implicit feedback can
adopt different forms such as the agent executing an action
different from the one suggested by the agent, the user
executing the task the agent suggested him, asking the
agent for another solution, or not dealing with the problem
at hand.

Once the agent has gathered feedback for its assistance,
it has to evaluate if the assistance experience was a success,
a failure or neither a success nor a failure, i.e. it is
undefined. An interaction experience is evaluated as a
success if the type of assistance the agent provided was the
one the user expected. An interaction experience is
evaluated as a failure if the assistance provided was of
the wrong type. Finally, if the agent cannot tell whether the
assistance experience is a success or a failure, because the
agent could not gather implicit feedback and the user did
not provide explicit feedback, the interaction is rated as
undefined.

Our profiling approach takes as input the set of user-
agent interaction experiences and learns when the user
requires a suggestion to deal with a situation, when he/she
needs a warning and when the user wants the agent to
perform a task on his/her behalf. It also determines when
the agent can interrupt the user’s work to provide him/her
assistance and when it can only send him/her a notification
without interrupting the user’s work. The outputs of the
algorithms constitute part of the user interaction profile,
which is used by the agent to decide how to assist a user in
a given situation. The content of the assistance action
(e.g. what was suggested) is obtained from the user’s
preferences and interests, as interface agents have done
thus far.

As we have said before, we developed two profiling
methods, WATSON and IONWI, to obtain a user’s
interruption and assistance preferences. These algorithms
use association rules to discover the existing relationships
between situations or contexts and the assistance actions a
user requires to deal with them, as well as the relationships
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between a situation, a user task, and the assistance
modality required. Fig. 4 shows the main steps of the
algorithms. These steps are similar for both algorithms, but
they differ in how rules are processed in each of them and
the structure of the outputs.

Association rules imply a relationship among a set of
items in a given domain. As defined by Madani et al.
(2009), association rule mining is commonly stated as: Let
I=i,...,i, be asetof items and D be a set of transactions,
each consisting of a subset X of items in I. An association
rule is an implication of the form X—-Y, where X C I,
Y I, and XNY =0. X is the rule’s antecedent and Y
is the consequent. The rule has support s in D if s percent
of D’s transactions contains XUY (support(X—Y)
=prob(XUY)). The rule X—Y holds in D with con-
fidence c if ¢ percent of D’s transactions that contain X,
also contain Y (confidence(X — Y) = prob(Y/X)). Given a
transaction database D, the problem of mining association
rules is to find all association rules that satisfy minimum
support (minsup) and minimum confidence (minconf).
Minsup and minconf are parameters of the mining
algorithm. In our work, the “items” are the different
components of an interaction experience, that is the
different values for the features describing the situation,
the assistance action, the modality, and so on.

We use the Apriori algorithm presented in Agrawal and
Srikant (1994) to generate association rules from a set of
user-agent interaction experiences (step 1 in Fig. 4). An
interaction experience describes a unique interaction
between the user and the agent, which can be initiated by
any of them. The interaction records the situation or
context originating it, the assistance the agent provided, the

modality of the assistance, the user feedback to the
assistance type and the modality (if available), and an
evaluation of the interaction (success, failure, or unde-
fined). For example, if the interaction experiences record
the assistance provided by an agent when the user wants to
create a tour for his/her holiday, the input would look like
in Fig. 5. The first eight attributes in each line represent the
situation originating the interaction, that is the different
features of a tour. For simplicity we represent situations as
“situationl”, and so on, in Fig. 4.

Once association rules are generated, we automatically
post-process the rules the Apriori algorithm generates so
that we can derive useful information about the user’s
preferences from them. Post-processing includes: detecting
the most interesting rules according to our goals (step 2),
eliminating redundant rules from the set of interesting rules
(step 3), eliminating contradictory rules of the remaining
set (step 4), and summarizing the rules obtained building
hypothesis about the user’s preferences (step 5).

To filter rules (step 2 in Fig. 4), we use templates or
constraints as proposed in Klementinen et al. (1994) that
select those rules that are relevant to our goals. For
example, we are interested in those association rules of the
forms: situation, assistanceaction — userfeedback, evaluation,
in the WATSON algorithm, and situation, modality,
[assistanceaction] — userfeedback, evaluation, in the IONWI
algorithm, where brackets mean that the attributes are
optional. Rules containing other combinations of attri-
butes are not considered. To eliminate redundant rules
(step 3 in the figure), we use a subset of the pruning rules
proposed in Shah et al. (1999). Basically, these pruning
rules state that given the rules A, B—C and A — C, the first

situation1,warning,not, ok,success
situation2,,suggestion,int,ok,success
situation3,warning,int,?,undefined
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Fig. 4. Overview of the proposed profiling algorithm.
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@relation icreatepackage

@attribute tmodality {family, friends, couple,teenagers,honeymoon,retired,alone }

Qattribute season {summer,winter,spring,autumm }

Qattribute cost {?,cheap,moderate,expensive,veryexpensive }

@attribute duration {?,longweekend,holiday,oneweek, twoweeks, threeweeks, onemonth, twomonths }

@attribute accomodation {onestar,twostars,threestars, fourstars, fivestars,inn }

@attribute transport {?,planebusiness,planetourist,planefirst,bus,train }

@attribute place {beach,mountains,hills,country,entertainment,relax,cultural,historical }

@attribute typeac {?,breakfast,allinclusive,onemeal, twomeals }

@attribute agentaction {?,warning, suggestion,action,noaction }

@attribute modality {interruption,notification }

@attribute userfeedback {ok,close,donotinterrupt,interruptnextime,other }

@attribute evaluation {success, failure,undefined }

@data

couple, summer, veryexpensive, threeweeks, threestars,planefirst,beach,breakfast,warning,notification, ok, success

couple, summer, expensive, ?, fourstars, ?,beach, ?,warning,notification, ok, success

couple, summer, expensive, ?, fourstars, ?,beach, onemeal, suggestion,notification, ok, success

couple, summer, expensive, longweekend, fourstars, planebusiness,beach, ?,warning,notification, ok, success

couple, summer,moderate, longweekend, fourstars,planebusiness,beach, ?, suggestion,notification, ok, success

couple, summer,moderate, twomonths, threestars, train,beach, twomeals, suggestion,notification, ok, success

couple, summer, veryexpensive,holiday, inn,planetourist,beach,breakfast,warning, interruption, other, failure

couple, summer,moderate, oneweek, fourstars, train,beach, onemeal,warning,notification, interruptnextime, success

friends,winter, cheap, longweekend, onestar, ?,country,allinclusive,warning, interruption, ok, success

Fig. 5. Part of an input file.

rule is redundant because it gives little extra information.
Thus, it can be deleted if the two rules have similar
confidence values. Similarly, given the rules A—B and
A—B,C, the first rule is redundant since the second
consequent is more specific. Thus, the redundant rule can
be deleted provided that both rules have similar confidence
values.

Then, we eliminate contradictory rules (step 4 in the
figure). We define a contradictory rule in WATSON as one
indicating a different assistance action for the same
situation and having a small confidence value with respect
to the rule being compared. Similarly, in IONWI, a
contradictory rule is one that indicates a different
assistance modality for the same context. After pruning,
we group rules by similarity and generate a hypothesis
(step 5 in Fig. 4) that considers a main rule, positive
evidence (redundant rules that could not be eliminated),
and negative evidence (contradictory rules that could not
be eliminated). The main rule is the rule in the group with
the greatest support value. The summarized rules consists
of a set of situation attributes in the antecedent and an
assistance action (WATSON) or assistance modality
(IONWI) in the consequent. Once we have a hypothesis
H, the algorithm computes its certainty degree by taking
into account the main rules support values and the positive
and negative evidence. To compute certainty degrees, we

use Eq. (3):

D=1 Sup(E+) Dok =1 Sup(E—);
E:;:1SWKEh» ?:1SWKEH

3)
where o, ff, and y are the weights of the termsSupAR is the
main rule support, Sup(E +) is the positive evidence
support, Sup(E—) is the negative evidence support, Sup(E)
is the support of a rule taken as evidence (positive or
negative), r is the amount of positive evidence, and t is the
amount of negative evidence. We use « =0.7, f=0.15 and
y=0.15, since we considered the support of the main rule
to be more important, and the negative and positive
evidence as equally important. If the certainty degree of the
hypothesis is greater than a given threshold value 9§, it
becomes part of the user profile. Otherwise, it is discarded.
The value of ¢ was experimentally set to 0.1 for the tourism
domain. More information about how this parameter can
be determined can be found in Schiaffino (2004).

Certainty(H) = aSup(AR)+ f

5. Experimental evaluation

To evaluate our proposed approach, we carried out two
types of experiments. First, we studied the influence of
user’s preferences on the detection of user’s intentions.
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Then, we analyzed the precision of our profiling approach
at assisting users. In a previous work (Schiaffino and
Amandi, 2006), we evaluated the performance of part of
our approach in the calendar management domain. In this
article, we analyze the performance of agents using our
proposed approach to assist users in the tourism domain.
The following sections describe the experiments and the
results obtained.

5.1. Influence of user’s preferences on user intention
detection: an example scenario

With the objective of showing the influence that the
user’s preferences have on the detection of the user’s
intention, we selected a scenario observed from the
interaction of a regular user of a tourism application in
which he used the application to select a tour he/she made
to Iguazu during the summer to make a complaint about it
and then created a travel package to visit Buenos Aires the
following autumn with a moderate cost. To achieve these
two goals, the user performed the following sequence
of tasks: {SelectTour, OpenClaimForm, EnterReason,
SendClaimForm, SelectTour, SelectModality, ChangeDes-
tination . We recorded the certainty values for all
intentions both in the Intention Graph containing the
user’s preferences information and in the same Intention
Graph without context nodes (the one owned originally by
the agent).

Fig. 5 a shows the evolution of the certainty values of
each possible intention in the original Intention Graph
without context nodes. In the first time slice, we show the a
priori probabilities of each intention when the user did not
perform any tasks in the application. CreatePackage is the
most probable intention, while WriteMail is the least
probable one. When the user performed the first task,
SelectTour, the ranking remained unchanged, although
there was a small increment in those intentions that
contained this task (CreatePackage, InviteFriend and
MakeClaim). Then the user performed OpenClaimForm,
and MakeClaim became the most probable intention. With
the following set of tasks performed by the wuser,
EnterReason and SendClaimForm, the certainty of Make-
Claim increases, while the other intentions certainty
decreases. WriteMail certainty remained unchanged along
this session because it is disconnected of the tasks
performed by the user. The agent considered a threshold
level with a value of 0.7 to believe in the intention pursued
by the user; it predicted the first intention with the third
performed task and the second intention in the third task.
If we consider the number of tasks in each intention, it
needed three tasks out of four to be performed to detect
MakeClaim intention, and all three tasks to detect
CreatePackage intention.

Fig. 5 b shows the same scenario but performed using the
Intention Graph with context nodes merged. The first
SelectTour task was performed when the user selected a
tour he/she previously taken during the summer with

destination Iguazu and with a high cost. We can see
that the certainty for MakeClaim is higher only with
the first task performed (which corresponds to the second
time slice in the plot). We can also see that the other
intentions noticeably decreased their certainty values.
The second tour selected by the user had destination
Buenos Aires, was planned for the following autumn
with a moderate cost. We can observe that with the mere
selection of the tour, CreatePackage intention could be
predicted.

A remarkable observation in the scenario shown is
that the incorporation of the user’s preferences allows an
earlier distinction of the actual intention of the user.
Another interesting fact that can be appreciated in Fig. 5 is
that the certainty of finished intentions gradually
decrements to its original value, as happens with Make-
Claim intention. This is due to the fading function
used by the intention graph that gradually decrements by
a fixed constant to the strength of the evidence on the
performed tasks. Similar results were observed with other
scenarios.

5.2. Evaluation of agents’ decision making

To evaluate the precision of our interaction profiling
approach at assisting users, we studied the number of
correct assistance actions executed by agents assisting users
with a calendar application, where the correctness is
determined by the user through explicit and implicit
feedback. To do this, we used a precision metric that
measures a personal agent’s ability to accurately assist a
user, which is shown in Eq. (4). This equation is an
adaptation of the precision metric proposed by Brown
et al. (1998).

. number of correct assistance actions
Precision = - : 4)
number of assistance actions

We used this metric to evaluate the agent’s performance in
deciding between a warning, a suggestion, or an action on
the user’s behalf; and between an interruption or a
notification. For each problem situation, we compared
the number of correct assistance actions against the total
number of assistance actions the agent executed.” To carry
out the experiments, we used 30 data sets containing user-
agent interaction experiences in the tourism domain. This
datasets correspond to the interaction between 15 users and
an agent assisting them in different contexts. The users had
different roles, some acted as clients and others as
employees of the travel agency. Each database record
contains attributes that describe the problem situation (or
the situation originating the interaction), the assistance
action the agent executed, the user feedback, and the user’s
evaluation of the interaction experience.

2 . . . PP .
“We considered an assistance action correct if it was the action the user
expected in a given situation.
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Fig. 7. Precision of the proposed profiling methods.

The data sets contained anywhere from 20 to 45 user-
agent interaction experiences.> We analyzed two assistance
situations in the tourism domain: the user creates a tour (in
order to ask travel agencies for information about it),
where the situation information consists of the modality of
the tour, the season, the cost, the duration, type of
accommodation, means of transport, place and meals
included; and the user, in this case an employee of a travel
agency, receives a complaint from a client, where the
situation description comprises the customer type, the
requested compensation or refund if there is any, and the
information of the tour originating the complaint (Fig. 6).

Fig. 7 compares the precision values for the three
approaches we evaluated. These three approaches are: the
confidence-based algorithm used traditionally by interface
agents; deciding the assistance action with WATSON
(without considering interruption preferences); deciding
the assistance action with WATSON +IONWI. The two
last approaches considered user intention recognition. The
values shown were obtained by averaging the precision for
the different datasets belonging to the different users. We

3The datasets are available at: http://users.exa.unicen.edu.ar/~ sschia/
personalization.html

used percentage values because the number of user-agent
interactions varied from one user to another. As the figure
shows, our approach had a higher overall percentage of
correct assistance actions or interactions than the
confidence-based algorithm for the two datasets.

In previous experiments in the calendar management
domain, we have obtained precision values of 86% and
91% for correct actions and interactions, which were
higher than the precision of the confidence-based algo-
rithm, 67%. In the tourism domain the values we obtained
were rather similar: 70% for confidence-based, 87% for
correct actions and 90% for correct assistance actions and
modalities. However, we observed a phenomenon that has
to be pointed out. In the calendar domain, the number of
user-agent interactions we worked with datasets bigger (80
instances in average) than in a tourism application. This
may be because, in our experiments, users schedule events
more frequently than they book or request information
about tours, in the same period of time. If we have a small
number of interaction instances in a dataset (e.g. 20-25),
there might be few repeated interactions and thus the
profiling algorithm will learn only those that are most
frequent. To deal with this problem, some parameters of
WATSON and IONWI were adjusted for the tourism
domain. The values of the parameters used in these
experiments were: minsup =0, 1; minconf =0,6 (0,8 for
the calendar domain); 6=0,1 (0,2 for the calendar
domain); 1, =0,1; 1,=0,8 13=0,3; do—it=0,8;
tell—me =0, 3. The first three parameters were set experi-
mentally (Schiaffino, 2004) and the last five were set
according to Maes (1994).

6. Related works

Some algorithms have been proposed to decide which
action an agent should execute next. These algorithms
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adopt mainly one of two approaches: some use decision
and utility theory (Fleming and Cohen, 2001; Horvitz,
1999), and others use confidence values attached to
different actions (Kozierok and Maes, 1993; Maes, 1994).
However, these works do not consider a user’s interaction
preferences, the possibility of providing different types of
assistance, or the particularities of the situation at hand.

Our work is related to those works that study the
etiquette of human—computer relationships (Miller, 2004),
since learning when to interrupt a user, detecting a user’s
intentions, and deciding how to best assist him can be
considered as part of this etiquette. Considering these
issues within interface agent development, and particularly
within user profiles, is novel.

Regarding interruptions, there have been numerous
studies exploring them in a general way, mainly in the
Human Computer Interaction (HCI) area. These studies
revealed that the disruptiveness of an interruption is related
to several factors, including complexity of the primary task
and/or interrupting task, similarity of the two tasks (Gillie
and Broadbent, 1989), whether the interruption is relevant
to the primary task (Czerwinski et al., 2000b), stage of the
primary task when the interruption occurs (Czerwinski
et al., 2000a), management strategies for handling interrup-
tions (Mc Farlane, 1999), effects of interruptions (Bailey and
Igbal, 2008; Bailey and Konstan, 2006), and modalities of
the primary task and the interruption (Arroyo et al., 2002).
Most of these studies are related to instant messaging
systems (Garrett and Danziger, 2008), they have been rarely
considered for interface agent development.

With respect to agents using plan recognition to detect a
user’s plans and intentions, some works have been done in
this direction (Horvitz et al., 1998; Rich et al., 2001; Duong
et al., 2006; Geib and Goldman, 2005; Philipose et al.,
2004; Madani et al., 2009). However, most of them do not
consider the user’s preferences within the process, and
those who consider them have limitations. For example,
Bauer (1996) looked into the acquisition of user preferences
for plan recognition for an email system. He consider
repeated patterns in the user behavior as preferences and
used ID3 to learn classes of situations based on the user’s
actions. With Bauer’s technique it is possible to learn, for
example, that a particular user will delete his email with
80% certainty, unless the email is from his manager, in
which case he saves it 90% of the times. The problem with
this approach compared to ours is that only one intention
can be ascribed for a given set of attributes, while we assign
a degree of certainty to each possible intention.

Finally, the work reported in this article can be
considered an extension of a previous work (Schiaffino
and Amandi, 2006). In that work we studied how the agent
could choose the best type of assistance for a given user in a
given situation. We analyzed the precision of the algo-
rithms proposed in the calendar management domain.
Now, we not only consider how an agent can choose the
best assistance action for a certain user, but also how it can
determine the user’s intention first in order to provide

proper and timely assistance. We describe a plan recogni-
tion approach to detect the user’s intentions and we
combine this approach with the algorithms presented in
our previous work to build the user profile. We also study
the performance of our proposal in the tourism domain
and compare it with the one obtained for the calendar
domain.

7. Conclusions

In this article, we presented an approach to personalize
the interaction with users that considers the users’
intentions and the users’ interaction preferences. To detect
a user’s intentions we propose a plan recognition approach,
which considers the user’s preferences to allow an earlier
detection. To learn a user’s interaction preferences, we
proposed two profiling methods.

We consider that our work contributes both to the
interface agents and human—computer interaction areas.
Our user profiling and decision making approaches
enhance an interface agent’s capabilities. Agent developers
can use our results to build interface agents that can adapt
to users’ expectations and preferences regarding user-agent
interaction. Our approach enables agents to personalize
their user interactions by learning the type of assistance
users’ need in different contexts and by learning how to
provide this assistance without annoying users.

We evaluated our proposal with promising results in a
calendar management application (Schiaffino and Amandi,
2006) and in a tourism application. As a future work, we
will carry out further experiments in these and other
domains. Particularly, we will try to evaluate our proposal
with bigger datasets, that is, containing more user-agent
interactions. In addition, we are enriching now the
information contained in the assistance situations by using
ontologies to model users’ context. A related work of our
research group in this direction is Eyharabide et al. (2009),
in which personalized assistance is provided to students
depending on their context in an e-learning system.
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