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Abstract. Given a positive integer k, a k-dominating set in a graph G is
a set of vertices such that every vertex not in the set has at least k neigh-
bors in the set. A total k-dominating set, also known as a k-tuple total
dominating set, is a set of vertices such that every vertex of the graph
has at least k neighbors in the set. The problems of finding the minimum
size of a k-dominating, resp. total k-dominating set, in a given graph,
are referred to as k-domination, resp. total k-domination. These gener-
alizations of the classical domination and total domination problems are
known to be NP-hard in the class of chordal graphs, and, more specifi-
cally, even in the classes of split graphs (both problems) and undirected
path graphs (in the case of total k-domination). On the other hand, it
follows from recent work by Kang et al. (2017) that these two families
of problems are solvable in time O(|V (G)|6k+4) in the class of interval
graphs. In this work, we develop faster algorithms for k-domination and
total k-domination in the class of proper interval graphs. The algorithms
run in time O(|V (G)|3k) for each fixed k ≥ 1 and are also applicable to
the weighted case.
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1 Introduction

Among the many variants of the domination problems [30,31], we consider in this
paper a family of generalizations of the classical domination and total domina-
tion problems known as k-domination and total k-domination. Given a positive
integer k and a graph G, a k-dominating set in G is a set S ⊆ V (G) such that
every vertex v ∈ V (G)\S has at least k neighbors in S, and a total k-dominating
set in G is a set S ⊆ V (G) such that every vertex v ∈ V (G) has at least k neigh-
bors in S. The k-domination and the total k-domination problems aim to find the
minimum size of a k-dominating, resp. total k-dominating set, in a given graph.
The notion of k-domination was introduced by Fink and Jacobson in 1985 [23]
and studied in a series of papers (e.g., [14,20,22,27,42]) and in a survey by
Chellali et al. [13]. The notion of total k-domination was introduced by Kulli in
1991 [41] and studied under the name of k-tuple total domination by Henning and
Kazemi in 2010 [32] and also in a series of recent papers [1,39,43,53]. The ter-
minology “k-tuple total domination” was introduced in analogy with the notion
of “k-tuple domination”, introduced in 2000 by Harary and Haynes [29].1 The
redundancy involved in k-domination and total k-domination problems can make
them useful in various applications, for example in forming sets of representa-
tives or in resource allocation in distributed computing systems (see, e.g., [31]).
However, these problems are known to be NP-hard [37,53] and also hard to
approximate [17].

The k-domination and total k-domination problems remain NP-hard in the
class of chordal graphs. More specifically, the problems are NP-hard in the class
of split graphs [42,53] and, in the case of total k-domination, also in the class of
undirected path graphs [43]. We consider k-domination and total k-domination
in another subclass of chordal graphs, the class of proper interval graphs. A
graph G is an interval graph if it has an intersection model consisting of closed
intervals on a real line, that is, if there exist a family I of intervals on the
real line and a one-to-one correspondence between the vertices of G and the
intervals of I such that two vertices are joined by an edge in G if and only
if the corresponding intervals intersect. A proper interval graph is an interval
graph that has a proper interval model, that is, an intersection model in which
no interval contains another one. Proper interval graphs were introduced by
Roberts [57], who showed that they coincide with the unit interval graphs, that
is, graphs admitting an interval model in which all intervals are of unit length.
Various characterizations of proper interval graphs have been developed in the
literature (see, e.g., [24,26,36,49]) and several linear-time recognition algorithms
are known, which in case of a yes instance also compute a proper interval model
(see, e.g., [18] and references cited therein).

Domination and total domination problems are known to be solvable in linear
time in the class of interval graphs (see [6,12,33] and [10,12,40,55,56], respec-
tively). Furthermore, for each fixed integer k ≥ 1, the k-domination and total

1 A set S of vertices is said to be a k-tuple dominating set if every vertex of G is
adjacent or equal to at least k vertices in S.
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k-domination problems are solvable in time O(n6k+4) in the class of interval
graphs where n is the order of the input graph. This follows from recent results
due to Kang et al. [38], building on previous works by Bui-Xuan et al. [8] and
Belmonte and Vatshelle [3]. In fact, Kang et al. studied a more general class of
problems, called (ρ, σ)-domination problems, and showed that every such prob-
lem can be solved in time O(n6d+4) in the class of n-vertex interval graphs,
where d is a parameter associated to the problem (see Corollary 3.2 in [38] and
the paragraph following it).

1.1 Our Results and Approach

We significantly improve the above result for the case of proper interval graphs.
We show that for each positive integer k, the k-domination and total k-
domination problems are solvable in time O(n3k) in the class of n-vertex proper
interval graphs. Except for k = 1, this improves on the best known running time.

Our approach is based on a reduction showing that for each positive integer k,
the total k-domination problem on a given proper interval graph G can be reduced
to a shortest path computation in a derived edge-weighted directed acyclic graph.
A similar reduction works for k-domination. The reductions immediately result in
algorithms with running time O(n4k+1). We show that with a suitable implemen-
tation the running time can be improved to O(n3k). The algorithms can be easily
adapted to the weighted case, at no expense in the running time.

1.2 Related Work

We now give an overview of related work and compare our results with most
relevant other results, besides those due to due to Kang et al. [38], which moti-
vated this work.
Overview. For every positive integer k, the k-domination problem is NP-hard in
the classes of bipartite graphs [2] and split graphs [42], but solvable in linear time
in the class of graphs every block of which is a clique, a cycle or a complete bipar-
tite graph (including trees, block graphs, cacti, and block-cactus graphs) [42],
and, more generally, in any class of graphs of bounded clique-width [19,50] (see
also [16]). The total k-domination problem is NP-hard in the classes of split
graphs [53], doubly chordal graphs [53], bipartite graphs [53], undirected path
graphs [43], and bipartite planar graphs (for k ∈ {2, 3}) [1], and solvable in
linear time in the class of graphs every block of which is a clique, a cycle, or
a complete bipartite graph [43], and, more generally, in any class of graphs of
bounded clique-width [19,50], and in polynomial time in the class of chordal
bipartite graphs [53]. k-domination and total k-domination problems were also
studied with respect to their (in)approximability properties, both in general [17]
and in restricted graph classes [2], as well as from the parameterized complexity
point of view [9,34].
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Besides k-domination and total k-domination, other variants of domination
problems solvable in polynomial time in the class of proper interval graphs (or
in some of its superclasses) include k-tuple domination for all k ≥ 1 [45] (see
also [44] and, for k = 2, [54]), connected domination [56], independent domina-
tion [21], paired domination [15], efficient domination [11], liar’s domination [51],
restrained domination [52], eternal domination [5], power domination [46], outer-
connected domination [48], Roman domination [47], Grundy domination [7], etc.

Comparison. Bertossi [4] showed how to reduce the total domination problem in
a given interval graph to a shortest path computation in a derived edge-weighted
directed acyclic graph satisfying some additional constraints on pairs of consecu-
tive arcs. A further transformation reduces the problem to a usual (unconstrained)
shortest path computation. Compared to the approach of Bertossi, our approach
exploits the additional structure of proper interval graphs in order to gain gener-
ality in the problem space. Our approach works for every k and is also more direct,
in the sense that the (usual or total, unweighted or weighted) k-domination prob-
lem in a given proper interval graph is reduced to a shortest path computation in
a derived edge-weighted acyclic digraph in a single step.

The works of Liao and Chang [45] and of Lee and Chang [44] consider various
domination problems in the class of strongly chordal graphs (and, in the case
of [45], also dually chordal graphs). While the class of strongly chordal graphs
generalizes the class of interval graphs, the domination problems studied in [44,
45] all deal with closed neighborhoods, and for those cases structural properties
of strongly chordal and dually chordal graphs are helpful for the design of linear-
time algorithms. In contrast, k-domination and total k-domination are defined
via open neighborhoods and results of [44,45] do not seem to be applicable or
easily adaptable to our setting.

Structure of the Paper. In Sect. 2, we describe the reduction for the total k-
domination problem. The specifics of the implementation resulting in improved
running time are given in Sect. 3. In Sect. 4, we discuss how the approach can be
modified to solve the k-domination problem and the weighted cases. We conclude
the paper with some open problems in Sect. 5. Due to lack of space, most proofs
are omitted. They can be found in the full version [58].

In the rest of the section, we fix some definitions and notation. Given a graph
G and a set X ⊆ V (G), we denote by G[X] the subgraph of G induced by X
and by G − X the subgraph induced by V (G) \ X. For a vertex u in a graph G,
we denote by N(u) the set of neighbors of u in G. Note that for every graph G,
the set V (G) is a k-dominating set, while G has a total k-dominating set if and
only if every vertex of G has at least k neighbors.

2 The Reduction for Total k-Domination

Let k be a positive integer and G = (V,E) be a given proper interval graph.
We will assume that G is equipped with a proper interval model I = {Ij | j =
1, . . . , n} where Ij = [aj , bj ] for all j = 1, . . . , n. (As mentioned in the introduc-
tion, a proper interval model of a given proper interval graph can be computed in
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linear time.) We may also assume that no two intervals coincide. Moreover, since
in a proper interval model the order of the left endpoints equals the order of the
right endpoints, we assume that the intervals are sorted increasingly according
to their left endpoints, i.e., a1 < . . . < an. We use notation Ij < I� if j < � and
say in this case that Ij is to the left of I� and I� is to the right of Ij . Also, we
write Ij ≤ I� if j ≤ �. Given three intervals Ij , I�, Im ∈ I, we say that interval
I� is between intervals Ij and Im if j < � < m. We say that interval Ij intersects
interval I� if Ij ∩ I� �= ∅.

Our approach can be described as follows. Given G, we compute an edge-
weighted directed acyclic graph Dt

k (where the superscript “t” means “total”)
and show that the total k-domination problem on G can be reduced to a shortest
path computation in Dt

k. The definition of the digraph given next is followed by
an example and an explanation of the intuition behind the reduction.

To distinguish the vertices of Dt
k from those of G, we will refer to them

as nodes. Vertices of G will be typically denoted by u or v, and nodes of Dt
k

by s, s′, s′′. Each node of Dt
k will be a sequence of intervals from the set I ′ =

I∪{I0, In+1}, where I0, In+1 are two new, “dummy” intervals such that I0 < I1,
I0 ∩ I1 = ∅, In < In+1, and In ∩ In+1 = ∅. We naturally extend the linear order
< on I to the whole set I ′. We will say that an interval I ∈ I ′ is associated with
a node s of Dt

k if it appears in sequence s. The set of all intervals associated with
s will be denoted by Is. Given a node s of Dt

k, we will denote by min(s) and
max(s) the first, resp., the last interval in Is with respect to ordering < of I ′. A
sequence (Ii1 , . . . , Iiq

) of intervals from I is said to be increasing if i1 < . . . < iq.
The node set of Dt

k is given by V (Dt
k) = {I0, In+1} ∪ S ∪ B, where:

– I0 and In+1 are sequences of intervals of length one.2

– S is the set of so-called small nodes. Set S consists exactly of those increasing
sequences s = (Ii1 , . . . , Iiq

) of intervals from I such that:
(1) k + 1 ≤ q ≤ 2k − 1,
(2) for all j ∈ {1, . . . , q − 1}, we have Iij

∩ Iij+1 �= ∅, and
(3) every interval I ∈ I such that min(s) ≤ I ≤ max(s) intersects at least k

intervals from the set Is \ {I}.
– B is the set of so-called big nodes. Set B consists exactly of those increasing

sequences s = (Ii1 , . . . , Ii2k
) of intervals from I of length 2k such that:

(1) for all j ∈ {1, . . . , 2k − 1}, we have Iij
∩ Iij+1 �= ∅, and

(2) every interval I ∈ I such that Iik
≤ I ≤ Iik+1 intersects at least k intervals

from the set Is \ {I}.

The arc set of Dt
k is given by E(Dt

k) = E0 ∪ E1, where:

– Set E0 consists exactly of those ordered pairs (s, s′) ∈ V (Dt
k) × V (Dt

k) such
that:
(1) max(s) < min(s′) and max(s) ∩ min(s′) = ∅,

2 This assures that the intervals min(s) and max(s) are well defined also for s ∈
{I0, In+1}, in which case both are equal to s.
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(2) every interval I ∈ I such that max(s) < I < min(s′) intersects at least k
intervals from Is ∪ Is′ ,

(3) if s ∈ B, then the rightmost k + 1 intervals associated with s pairwise
intersect, and

(4) if s′ ∈ B, then the leftmost k + 1 intervals associated with s′ pairwise
intersect.

– Set E1 consists exactly of those ordered pairs (s, s′) ∈ V (Dt
k) × V (Dt

k) such
that s, s′ ∈ B and there exist 2k + 1 intervals Ii1 , . . . , Ii2k+1 in I such that
s = (Ii1 , Ii2 , . . . , Ii2k

) and s′ = (Ii2 , Ii3 , . . . , Ii2k+1).

To every arc (s, s′) of Dt
k we associate a non-negative length �(s, s′), defined

as follows:

�(s, s′) =

⎧
⎨

⎩

|Is′ |, if (s, s′) ∈ E0 and s′ �= In+1;
1, if (s, s′) ∈ E1;
0, otherwise.

(∗)

The length of a directed path in Dt
k is defined, as usual, as the sum of the lengths

of its arcs.

Example 1. Consider the problem of finding a minimum total 2-dominating set
in the graph G given by the proper interval model I depicted in Fig. 1(a). Using
the reduction described above, we obtain the digraph Dt

2 depicted in Fig. 1(c),
where, for clarity, nodes (Ii1 , . . . , Iip

) of Dt
2 are identified with the corresponding

strings of indices i1i2 . . . ip. We also omit in the figure the (irrelevant) nodes
that do not belong to any directed path from I0 to In+1. There is a unique
shortest I0, I9-path in Dt

2, namely (0, 2356, 3567, 9). The path corresponds to
{2, 3, 5, 6, 7}, the only minimum total 2-dominating set in G.

The correctness of the above reduction is established by proving the following.

Proposition 1. Given a proper interval graph G and a positive integer k, let
Dt

k be the directed graph constructed as above. Then G has a total k-dominating
set of size c if and only if Dt

k has a directed path from I0 to In+1 of length c.

The intuition behind the reduction is the following. The subgraph of G
induced by a minimum total k-dominating set splits into connected components.
These components as well as vertices within them are naturally ordered from
left to right. Moreover, since each connected subgraph of a proper interval graph
has a Hamiltonian path, the nodes of Dt

k correspond to paths in G, see condition
(2) for small nodes or condition (1) for big nodes. Since each vertex of G has
at least k neighbors in the total k-dominating set, each component has at least
k + 1 vertices. Components with at least 2k vertices give rise to directed paths
in Dt

k consisting of big nodes and arcs in E1. Each component with less than 2k
vertices corresponds to a unique small node in Dt

k, which can be seen as a trivial
directed path in Dt

k. The resulting paths inherit the left-to-right ordering from
the components and any two consecutive paths are joined in Dt

k by an arc in
E0. Moreover, I0 is joined to the leftmost node of the leftmost path with an arc
in E0 and, symmetrically, the rightmost node of the rightmost path is joined to
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I1
I2

(a)

II3
I4

I5
I6

1

2

3 5

4

(b)

G

I7
I8 7

6

8

Dt
2

123 678

1234

1235

2346

2345

3467

3456
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4678

4567
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2356
1

3

3

01

4 4

4
4

1
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0

0

B

(c)

0 91 1
1

0

5678

1

0
1

1

1

Fig. 1. (a) A proper interval model I, (b) the corresponding proper interval graph G,
and (c) a part of the derived digraph Dt

2, where only nodes that lie on some directed
path from I0 to I9 are shown. Edges in E1 are depicted bold.

In+1 with an arc in E0. Adding such arcs yields a directed path from I0 to In+1

of the desired length.
The above process can be reversed. Given a directed path P in Dt

k from I0 to
In+1, a total k-dominating set in G of the desired size can be obtained as the set
of all vertices corresponding to intervals in I associated with internal nodes of
P . The total k-dominating property is established using the defining properties
of small nodes, big nodes, and arcs in E0 and in E1. For example, condition (3)
in the definition of arcs in E0 guarantees that the vertex corresponding to the
rightmost interval associated with s ∈ B where (s, s′) ∈ E0 is k-dominated. The
condition is related to the fact that in proper interval graphs the neighborhood
of a vertex represented by an interval [a, b] splits into two cliques: one for all
intervals containing a and another one for all intervals containing b.

The digraph Dt
k has O(n2k) nodes and O(n4k) arcs and can be, together with

the length function � on its arcs, computed from G directly from the definition
in time O(n4k+1). A shortest directed path (with respect to �) from I0 to all
nodes reachable from I0 in Dt

k can be computed in polynomial time using any of
the standard approaches, for example using Dijkstra’s algorithm. Actually, since
Dt

k is acyclic, a dynamic programming approach along a topological ordering of
Dt

k can be used to compute shortest paths from I0 in linear time (in the size
of Dt

k). Proposition 1 therefore implies that the total k-domination problem is
solvable in time O(n4k+1) in the class of n-vertex proper interval graphs.
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We will show in the next section that, with a careful implementation, a
shortest I0, In+1-path in Dt

k can be computed without examining all the arcs of
the digraph, leading to the claimed improvement in the running time.

3 Improving the Running Time

We assume all notations from Sect. 2. In particular, G is a given n-vertex proper
interval graph equipped with a proper interval model I and (Dt

k, �) is the derived
edge-weighted acyclic digraph with O(n2k) nodes. We apply Proposition 1 and
show that a shortest I0, In+1-path in Dt

k can be computed in time O(n3k). The
main idea of the speedup relies on the fact that the algorithm avoids examining
all arcs of the digraph. This is achieved by employing a dynamic programming
approach based on a partition of a subset of the node set into O(nk) parts
depending on the nodes’ suffixes of length k. The partition will enable us to
efficiently compute minimum lengths of four types of directed paths in Dt

k, all
starting in I0 and ending in a specified vertex, vertex set, arc, or arc set. In
particular, a shortest I0, In+1-path in Dt

k will be also computed this way.

Theorem 1. For every positive integer k, the total k-domination problem is
solvable in time O(|V (G)|3k) in the class of proper interval graphs.

Proof (sketch). By Proposition 1, it suffices to show that a shortest directed
path from I0 to In+1 in Dt

k can be computed in the stated time. Due to lack
of space, we only explain some implementation details. In order to describe the
algorithm, we need to introduce some notation. Given a node s ∈ S ∪ B, say
s = (Ii1 , . . . , Iiq

) (recall that k + 1 ≤ q ≤ 2k), we define its k-suffix of s as the
sequence (Iiq−k+1 , . . . , Iiq

) and denote it by sufk(s).
The algorithm proceeds as follows. First, it computes the node set of Dt

k and
a subset B′ of the set of big nodes consisting of precisely those nodes s ∈ B
satisfying condition (3) in the definition of E0 (that is, the rightmost k + 1
intervals associated with s pairwise intersect). Next, it computes a partition
{Aσ | σ ∈ Σ} of S ∪ B′ defined by Σ = {sufk(s) : s ∈ S ∪ B′} and Aσ = {s ∈
S ∪ B′ | sufk(s) = σ} for all σ ∈ Σ.

The algorithm also computes the arc set E1. On the other hand, the arc set
E0 is not generated explicitly, except for the arcs in E0 with tail I0 or head In+1.
Using dynamic programming, the algorithm will compute the following values.

(i) For all s ∈ V (Dt
k) \ {I0}, let p0s denote the minimum �-length of a directed

I0,s-path in Dt
k ending with an arc from E0.

(ii) For all s ∈ V (Dt
k) \ {I0}, let ps denote the minimum �-length of a directed

I0,s-path in Dt
k.

(iii) For all e ∈ E1, let pe denote the minimum �-length of a directed path in
Dt

k starting in I0 and ending with e.
(iv) For all σ ∈ Σ, let pσ denote the minimum �-length of a directed path in Dt

k

starting in I0 and ending in Aσ.
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In all cases, if no path of the corresponding type exists, we set the value of the
respective p0s, ps, pe, or pσ to ∞.

Clearly, once all the p0s, ps, pe, and pσ values will be computed, the length
of a shortest I0, In+1-path in Dt

k will be given by pIn+1 .
The above values can be computed using the following recursive formulas:

(i) p0s values:
– For s ∈ S ∪ B, let Σs = {σ ∈ Σ | (s̃, s) ∈ E0 for some s̃ ∈ Aσ} and set

p0s =

⎧
⎪⎨

⎪⎩

|Is|, if (I0, s) ∈ E0;
min
σ∈Σs

pσ + |Is|, if (I0, s) �∈ E0 and Σs �= ∅;

∞, otherwise.

– For s = In+1, let p0s = min
(s̃,s)∈E0

ps̃.

(ii) ps values: For all s ∈ V (Dt
k) \ {I0}, we have ps = min

{

p0s, min
(s̃,s)∈E1

p(s̃,s)

}

.

(iii) pe values: For all e = (s, s′) ∈ E1, we have pe = ps + 1.
(iv) pσ values: For all σ ∈ Σ, we have pσ = min

s∈Aσ

ps.

The above formulas can be computed following any topological sort of Dt
k such

that if s, s′ ∈ S ∪ B are such that sufk(s) �= sufk(s′) and sufk(s) is lexicograph-
ically smaller than sufk(s′), then s appears strictly before s′ in the ordering.
When the algorithm processes a node s ∈ V (Dt

k) \ {I0}, it computes the values
of p0s, pe for all e = (s̃, s) ∈ E1, and ps, in this order. For every σ ∈ Σ, the value
of pσ is computed as soon as the values of ps are known for all s ∈ Aσ. This
completes the description of the algorithm. �

4 Modifying the Approach for k-Domination and
for Weighted Problems

With minor modifications of the definitions of small nodes, big nodes, and arcs
in E0 of the derived digraph, the approach developed in Sects. 2 and 3 for total
k-domination leads to an analogous result for k-domination.

Theorem 2. For every positive integer k, the k-domination problem is solvable
in time O(|V (G)|3k) in the class of proper interval graphs.

The approach of Kang et al. [38], which implies that k-domination and total
k-domination are solvable in time O(|V (G)|6k+4) in the class of interval graphs
also works for the weighted versions of the problems, where each vertex u ∈ V (G)
is equipped with a non-negative cost c(u) and the task is to find a (usual or total)
k-dominating set of G of minimum total cost. For both families of problems, our
approach can also be easily adapted to the weighed case. Denoting the total
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cost of a set J of vertices (i.e., intervals) by c(J ) =
∑

I∈J c(I), it suffices to
generalize the length function from (∗) in a straightforward way, as follows:

�(s, s′) =

⎧
⎨

⎩

c(Is′), if (s, s′) ∈ E0 and s′ �= In+1;
c(min(s′)), if (s, s′) ∈ E1;
0, otherwise.

(1)

This results in O(|V (G)|3k) algorithms for the weighted (usual or total) k-
domination problems in the class of proper interval graphs.

5 Conclusion

In this work, we presented improved algorithms for weighted k-domination and
total k-domination problems for the class of proper interval graphs. The time
complexity was significantly improved, from O(n6k+4) to O(n3k), for each fixed
integer k ≥ 1. Our work leaves open several questions. Even though polyno-
mial for each fixed k, our algorithms are too slow to be of practical use, and
the main question is whether having k in the exponent of the running time
can be avoided. Are the k-domination and total k-domination problems fixed-
parameter tractable with respect to k in the class of proper interval graphs?
Could it be that even the more general problems of vector domination and total
vector domination (see, e.g., [17,25,28,35]), which generalize k-domination and
total k-domination when k is part of input, can be solved in polynomial time in
the class of proper interval graphs? It would also be interesting to determine the
complexity of these problems in generalizations of proper interval graphs such as
interval graphs, strongly chordal graphs, cocomparability graphs, and AT-free
graphs.
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