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a b s t r a c t

A ‘‘bent waveguide’’ in the sense used here is a small perturbation of a two-dimensional rectangular
strip which is infinitely long in the down-channel direction and has a finite, constant width in the cross-
channel coordinate. The goal is to calculate the smallest (‘‘ground state’’) eigenvalue of the stationary
Schrödinger equation which here is a two-dimensional Helmholtz equation, ψxx + ψyy + Eψ = 0 where
E is the eigenvalue and homogeneous Dirichlet boundary conditions are imposed on the walls of the
waveguide. Perturbation theory gives a good description when the ‘‘bending strength’’ parameter ϵ is
small as described in our previous article (Amore et al., 2017) and other works cited therein. However,
such series are asymptotic, and it is often impractical to calculate more than a handful of terms. It is
therefore useful to develop numerical methods for the perturbed strip to cover intermediate ϵ where the
perturbation series may be inaccurate and also to check the pertubation expansion when ϵ is small. The
perturbation-induced change-in-eigenvalue, δ ≡ E(ϵ) − E(0), is O(ϵ2). We show that the computation
becomes very challenging as ϵ → 0 because (i) the ground state eigenfunction varies on both O(1) and
O(1/ϵ) length scales and (ii) high accuracy is needed to compute several correct digits in δ, which is
itself small compared to the eigenvalue E. The multiple length scales are not geographically separate,
but rather are inextricably commingled in the neighborhood of the boundary deformation. We show
that coordinate mapping and immersed boundary strategies both reduce the computational domain to
the uniform strip, allowing application of pseudospectral methods on tensor product grids with tensor
product basis functions. We compared different basis sets; Chebyshev polynomials are best in the cross-
channel direction. However, sine functions generate rather accurate analytical approximations with just
a single basis function.

In the down-channel coordinate, X ∈ [−∞,∞], Fourier domain truncation using the change of
coordinate X = sinh(Lt) is considerably more efficient than rational Chebyshev functions TBn(X; L). All
the spectral methods, however, yielded the required accuracy on a desktop computer.

Published by Elsevier B.V.

1. Introduction

As reviewed in our previous article [1], there is considerable
interest in the localized ground state eigenfunctions that arise
when an infinitely long, uniform width quantum waveguide is
perturbed by a localized bulge in the wall or by a sharp bend as
shown schematically in Fig. 1. Perturbation theory, as developed in
our article and by other articles we cite, is a good option when the
perturbation parameter is very small. However, it is still desirable
to develop numerical methods that can compute the eigenvalues
and eigenfunctions with spectral accuracy.
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The numerical computations have two large challenges. The
eigenfunctions for the uniform, unperturbed waveguide are in-
dependent of the down-channel coordinate x ∈ [−∞,∞] and
are sinusoids in the cross-channel coordinate y. However, when
the perturbation is very small but has a length scale comparable
to the width of the waveguide (the usual case), the ground state
eigenfunction has two widely disparate length scales. One is the
O(1) length scale of the wall perturbation. The other is the O(1/ϵ)
length scale of the slow decay of the eigenfunction in the down-
channel direction.

This is one numerical challenge, but verification of perturbation
theory is also hard because, to provide any useful information
about the accuracy of the perturbative approximation, the numer-
ical method must accurately calculate the tiny difference between
the perturbed and unperturbed eigenvalues.
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Table 1
Notation.

(x, y) Cartesian coordinates for the physical domain
E Schroedinger equation eigenvalue
B(x, y) Boundary function: its zero isoline is the boundary
D Total degree of a polynomial (for xm+n , D = m + n)
H Pseudospectral discretization matrix
H Laplace operator
L Map parameter for rational Chebyshev functions TBn
L Map parameter for the sinh-Fourier method
M Number of basis functions in X
N Number of basis functions in Y , the cross-channel coordinate
Ntotal Total number of functions in the tensor product basis,MN
P Number of interpolation points
T Parameter for parametric specification of the upper boundary curve
W Boundary of the region X ∈ [W,∞] where asymptotic analysis yields an explicit approximation to the eigenfunction
X Computational coordinate in the ‘‘down-channel’’ direction, X ∈ [−π, π]

Y Computational coordinate perpendicular to the walls (‘‘cross-channel coordinate’’), Y ∈ [0, 1]
δ Change in the ground state eigenvalue due to perturbation
ϵ Perturbation parameter; strength of domain deformation
ν Mode number for the y-dependent factor (cross-channel factor)
ψ(x, y) Wavefunction [the unknown in the Schroedinger equation]
χn(X) One-dimensional basis in the down-channel computational coordinate X
Θn(Y ) One-dimensional basis in the cross-channel computational coordinate Y
σ (x, y) Metric factor in the PDE induced by conformal mapping

Fig. 1. Schematic of a bent waveguide. The unperturbed waveguide is a strip which
is infinitely long in the ‘‘down-channel’’ coordinate x. The waveguides considered
here are perturbed by bulges in one wall and are not actually bent. The jargon
‘‘bent waveguide’’ has become a shorthand for the class of ‘‘waveguides that are
perturbations of a uniform-width, infinitely long rectangle by bend, bulging walls
or other deformation that allows a bound state of finite energy’’.

Thus, a low order method is quite useless. All the algorithms
applied here are spectrally accurate.

Spectralmethods applied to a phenomenonwith a single spatial
scale are well understood as cataloged in [2–4]. However, applying
spectral methods when there are multiple spatial scales is still an
application on the research frontier. SIAM founded its Journal of
Multiscale Modeling and Simulation not because multiple scales are
passé, but because multiple scale methods are the frontier.

The eigenproblem is

ψxx + ψyy + Eψ = 0, ψ(x, y) = 0 ∀(x, y) ∈ ∂Ω (1)

where E is the eigenvalue and we impose homogeneous Dirichlet
boundary conditions on the walls of the waveguide ∂Ω . Important
symbols are listed in Table 1. Note that subscripts with respect
to a coordinate denote partial differentiation with respect to that
coordinate, a convention employed throughout this article.

2. Strategies for an asymmetric channel

Many strategies have been applied to complicated domains,
but we concentrate on approaches that are well-suited to per-
turbed rectangular domains: conformal mapping and the im-
mersed boundarymethod. Both transform thewaveguide from the
‘‘physical coordinates’’ (x, y) to computational coordinates (X, Y )
where the domain is a channel of uniform unit width in the cross-
channel coordinate Y , but extending indefinitely in the down-
channel X coordinate. Thus, like the unperturbed domain, the
computational domain in the coordinates (X, Y ) is a rectangle.

We shall now briefly describe each strategy.
In the conformal mapping method, the computational domain

is the infinite, uniformwidth channel in the coordinates (X, Y ). This
is the image of a non-rectangular domain under a conformal map-
ping. Because the mapping is conformal, the coordinate transfor-
mation merely multiplies the eigenvalue term in the Schrödinger
equation by the metric factor. The ‘‘crowding’’ or ‘‘Geneva Effect’’,
that is, a highly nonuniform grid, is fatal to most efforts at grid
generation by conformal mapping [5]. Here, crowding is not an
issue because the map is a small perturbation of the identity trans-
formation. The conformal mapping used here is given by a simple
analytical expression. However, an explicit conformal map may
not be available. What then? One option is to calculate conformal
maps using perturbation theory as in [6,7]. Another is to apply
PDE-solvers that do not require a conformalmapping as elaborated
below.

The key idea of an ‘‘immersed boundary’’ method is to embed
the physical domain inside a computational domain which, in
this case, is an infinite strip of uniform width [8–10]. Boundary
conditions are imposed by Krylov’s method [6]. That is, if the
boundary is specified implicitly as the union of the zero isolines of a
function B(x, y), then homogeneous Dirichlet boundary conditions
are enforced by writing the approximation as

ψ(x, y) = B(x, y)v(x, y) (2)

where v(x, y) is an unconstrained sum of tensor product basis
functions.

An alternative to these approaches is to map the perturbed
waveguide into the channel of uniform unit width using a non-
conformal mapping. The bad news is that themetric factors will be
numerous, significantly extending the debugging time. However,
relaxing conformality opens up a vast spectrum of grid generation
techniques for future studies.

3. A typical asymmetric channel

In the rest of the article, we focus on an example that is rep-
resentative of a broad class of bent waveguides – more accurately
described as ‘‘bulging waveguides’’ – in which the perturbation is
a distortion of the shape of the upper boundary, y = 1. We shall
concentrate on a particular distortion, but themethods applied are
general. In our case, the perturbation is generated by the conformal
map

F (z) = z + ϵ tanh(z), ϵ ≪ 1. (3)
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The perturbed channel has a lower boundary at y = 0, a
straight line identical with the unperturbed channel, but the upper
boundary is altered from y = 1 to a curve described in parametric
form by

x = T + ϵ
sinh(2T )

cos(2) + cosh(2T )
(4)

y = 1 + ϵ
sin(2)

cos(2) + cosh(2T )
, T ∈ [−∞,∞]. (5)

The bulge is symmetric about x = 0, so the ground state eigenmode
has the same property. We exploit this symmetry by using basis
sets restricted to symmetric functions only.

When the bulging channel in (x, y) is conformally mapped to
the straight channel in the computational coordinates (X, Y ), the
transformed problem in the straight channel becomes

ψXX + ψYY + (1 + σ (X, Y ))Eψ = 0,
ψ(x, 0) = ψ(x, 1) = 0 (6)

where σ is a known function. (Note that (X, Y ) are the computa-
tional coordinates on the unbounded rectangle.) To calculate the
metric factor σ (X, Y ), it is necessary to convert the parametric
specification of the boundary curve to an implicit formas described
in Appendix.

Any conformal mapping yields the simple transformed form
ψXX + ψYY + (1 + σ (X, Y ))Eψ = 0; for the particular case of the
boundary described by the parametric form above,

σ (X, Y ) = 4ϵ
(cosh(2X) cos(2Y ) + 1)
(cosh(2X) + cos(2Y ))2

+ 4ϵ2
1

(cosh(2X) + cos(2Y ))2
. (7)

This function σdecays exponentially fast as |x| → ∞ and
therefore the PDE degenerates to a constant coefficient equation
for X > W for some sufficiently large W, allowing an asymptotic
analysis as X → ∞ as given in the next section.

The conformal mapping is useful for theory and numerical
methods. The immersed boundary method allows numerical solu-
tions to alternatively be calculated on the original domain without
a change of coordinate.

4. The challenge of multiple spatial scales: asymptotic analysis

The bent waveguide problem is challenging because any suc-
cessful method must resolve wildly disparate length scales in the
down-channel direction. After the perturbed waveguide is confor-
mally mapped to a uniform strip in the computational coordinates
(X, Y ), an arbitrary solution can always be expanded into a Fourier
sine series in Y with X-dependent coefficients. Fig. 2 shows that
the lowest sine coefficient, b1(X), decays very slowly compared to
the higher harmonics, bn(X), n ≥ 2. The ratio of decay scales only
worsens as ϵ → 0.

To understandwhy there is this large ratio of scales, we proceed
in several steps. First, solve the unperturbed problem

ψxx + ψyy + Eψ = 0, ψ(x, 0) = ψ(x, 1) = 0. (8)

When the domain is the unperturbed infinite strip, the eigenfunc-
tions and eigenvalues are

ψn = sin(nπ y), n = 1, 2, . . . En = n2 π2. (9)

These eigenfunctions are independent of x. This implies that the
modes are unphysical in the sense that the integral of the square
of the eigenfunction over the entire infinite strip,which is the usual
L2 norm of the mode, is infinite. The perturbation to the geometry
creates an eigenmode which has finite norm and energy.

Fig. 2. The solid curves are the lowest three sine coefficients for ϵ = 1/25 in
the expansion of the solution to our standard example as ψ(X, Y ) =

∑
n=1bn(X)

sin(nπY ). The dotted curves are the asymptotic approximations derived in the text
as (21).

Next, conformallymap the perturbedwaveguide to the uniform
width infinite strip in the computational coordinates (X, Y ). The
partial differential equation transforms to

ψXX + ψYY + (1 + σ (X, Y ))Eψ = 0,
ψ(x, 0) = ψ(x, 1) = 0 (10)

where σ is uniquely determined by the choice of the waveguide
perturbation and thus of the conformal mapping.

For now only qualitative properties are relevant. One such
property is that the magnitude of σ is O(ϵ) where ϵ ≪ 1 is
the perturbation parameter. Another important property is that
σ (X, Y ) decays exponentially fast as |X | → ∞.

For all X and Y , perturbed eigenmodes can be expanded as
a Fourier sine series in the cross-channel coordinate, u(X, Y ) =∑

∞

n=1bn(X) sin(nπY ). Substitution of the sine series into the partial
differential equation followed byGalerkin’smethod gives the set of
ordinary differential equations in X

bn,XX + (E − n2π2)bn +

∞∑
m=1

bm(X)Imn(X) = 0 (11)

Imn = 2
∫ 1

0
dY sin(nY )σ (X, Y ) sin(mY ) (12)

bn(X) → 0 as X → ±∞ (13)

σ (X, Y ) = 4ϵ
(cosh(2X) cos(2Y ) + 1)
(cosh(2X) + cos(2Y ))2

+ 4ϵ2
1

(cosh(2X) + cos(2Y ))2
(14)

∼ 8ϵ cos(2Y ) exp(−2X), |X | ≫ 1. (15)

For large X , the ODE system simplifies to

b1,XX − δ̂ϵ2b1 = O(ϵ) (16)

b2,XX − 3π2b2 = −I12b1 (17)

b3,XX − 8π2b3 = −I13b1 (18)

where

I12 ∼ − ϵ 8
π (cos (2)− 1) e−2 X

π2 − 1
, X ≫ 1 (19)

I13 ∼ ϵ 48
π (cos (2)+ 1) e−2 X

9π2 − 4
. (20)
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Then for X ≥ W,

b1(X) ∼ b1(W) exp
(
−

√
δ̂ ϵ(X − W)

)
(21)

b2 ∼ −
8
3
π ϵ (cos (2)− 1)

π2 − 1
b1(X) exp(−2X) (22)

b3 ∼ 6
π ϵ (cos (2)+ 1)

9π2 − 4
b1(X) exp(−2X). (23)

Fig. 2 shows excellent agreement between the numerical curves
and the asymptotic predictions (21).

The ratio of the decay scale for the fundamental b1 and the
higher harmonics bn(X) is thus

rscales ∼
2√
δ̂ ϵ

(24)

∼
1
π2 ϵ

(25)

where the last line substitutes the lowest order perturbative ap-
proximation for δ̂, 4π4, from [1]. When ϵ ≪ 1/10, the numerical
method must resolve two very disparate length scales.

Denoting the number of basis functions in X and Y byM and N ,
the two-scale dependence demands

M ≫ N. (26)

5. The pseudospectral method

5.1. The general formalism

The eigenfunction is approximated by a series of basis functions
φn(X, Y ):

ψ(X, Y ) =

Ntotal∑
n=1

an φn(X, Y ) (27)

where we assume that the basis functions individually satisfy the
boundary conditions. Let (Xj, Yj) denote a set of Ntotal interpolation
points. Let the differential eigenproblem be

Hψ + EV(X, Y )ψ = 0 (28)

where H is an elliptic operator [here, the Laplacian operator, H =

∂XX + ∂YY ] and V(X, Y ) is a function smooth on the computa-
tional domain but otherwise arbitrary and E is the eigenvalue.
The pseudospectral discretization of this is the generalized matrix
eigenproblem

Ha = EVa (29)

where the elements of the vector a are the spectral coefficients an
and the matrix elements are

Hjn = H(φn)|X=Xj,Y=Yj (30)

Vjn = V(Xj, Yj)φn(Xj, Yj). (31)

The pseudospectral algorithm (and Galerkin methods, applied
later) is discussed at length in the book [2], especially Chapters 3
to 6.

In our applications, the basis is a tensor product basis:

φk(X, Y ) = χm(X)Θn(Y ), m = 1, 2, . . . ,M;

n = 1, 2, . . . ,N (32)

where the total number of basis functions is Ntotal = MN . The
grid is a tensor product grid in the sense that the Ntotal points are
all possible combinations, MN in number, of the one-dimensional
grids with their indices i and j varying independently. That is, the

interpolation points are (Xi, Yj), i = 1, 2, . . . ,M, j = 1, 2, . . . ,N
where the Xi are the standard grid associated with the basis func-
tions χm(X) and the Yj are the canonical one-dimensional grid
points appropriate for the basisΘn(Y ).

5.2. An overview of our example

We applied a variety of methods to calculate the ground state
eigenvalue as displayed in Table 2. Results are expressed in terms
of the difference between the perturbed and unperturbed eigen-
values

δ ≡ π2
− E(ϵ). (33)

To recall from previous sections, the channel is an infinite strip
of uniform width perturbed so that one wall is deformed to the
shape described in parametric form by x = T + ϵ sinh(2T )/
(cos(2) + cosh(2T )) , y = 1 + ϵ sin(2)/(cos(2) + cosh(2T ))where
T is the parameter. The bulge is symmetric about x = 0, so the
ground state eigenmode has the same property. We exploit this
by using basis functions symmetric about the origin in the down-
channel coordinate x.

6. Cross-channel basis functions: Chebyshev polynomials ver-
sus sine functions

To enforce homogeneous boundary conditions on the walls,
we employ basis functions which individually vanish at each wall,
either pairs of Chebyshev polynomials or sin(πnY ).

For both the conformal mapping and immersed boundary
methods, the computational domain is an infinite, uniform width
channel in the coordinates (X, Y ). However, the width is different
from one for the immersed boundary approach, so we shall derive
the Chebyshev polynomial formalism for the interval Y ∈ [A, B]
where A and B are arbitrary.

The Chebyshev polynomials are defined by the recurrence rela-
tion Tn+1(z) = 2zTn(z)− Tn−1(z) with the starting values T1(z) = z
and T0 ≡ 1. If z = cos(t), this recurrence becomes the trigonomet-
ric identity cos([n + 1]t) = 2 cos(t) cos(nt) − cos([n − 1]t). Thus
Tn(cos(t)) = cos(nt) where Tn(z) is the Chebyshev polynomial of
degree n. It follows that the Chebyshev polynomials on the interval
Y ∈ [A, B] are the images of a Fourier cosine basis under the change
of coordinate

Tn(z) = cos(nt) (34)

z = (2Y − (B + A))/(B − A) (35)

t = arccos(z) = arccos
(
2Y − (B + A)

B − A

)
(36)

where t ∈ [0, π] is the ‘‘trigonometric coordinate’’, z ∈ [−1, 1] is
the Chebyshev polynomial argument and Y ∈ [A, B] is the cross-
channel coordinate.

Derivatives can be calculated in the trigonometric coordinate
and then transformed, by applying the chain rule, to the Y deriva-
tives we actually need. The canonical interpolation points in Y
are the images of a uniform grid in the trigonometric coordinate.
Because we will use basis functions that satisfy the boundary
conditions, we construct a Chebyshev–Lobatto grid with (N + 2)
points and then omit the endpoints

Yk ≡
B − A
2

cos
(
π

k
N + 1

)
+

B + A
2

, k = 1, 2, . . .,N. (37)

To satisfy the boundary conditions, we employ basis functions
that individually satisfy the homogeneous conditions on the walls.
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Table 2
Computed eigenvalue changes δ in the ground state for various basis sets in various truncations where δ = π2

− E. M and N are the number of basis functions in X and Y .
L and L are the TB and SINH ‘‘map parameters’’. ‘‘Conformal’’ indicates that the domain is conformally mapped to the uniform width rectangle. ‘‘TB’’ means that rational
Chebyshev functions of even degree were the basis in X; ‘‘SINH+COS’’ implies that the X coordinate was transformed by the hyperbolic sine mapping followed by Fourier
cosine domain truncation. ‘‘TN’’ denotes that Chebyshev polynomials were the cross-channel basis; ‘‘SINE’’ denotes sin(nπY ) was used instead. ‘‘GAL’’ means that Galerkin’s
method replaced the pseudospectral discretization used for all other entries.

Method and basis L M N −δ rel. error

ϵ = 1/10,000

Conf TB & TN L = 100 M = 100 N = 20 −2.240655e−08 −0.42
Conf TB & TN L = 100 M = 300 N = 20 −3.888793e−08 −0.0016
Conf TB & TN L = 100 M = 500 N = 20 −3.895123e−08 −1.7e−05
Conf TB & TN L = 100 M = 700 N = 20 −3.895156e−08 −8.7e−06
Conf TB & TN L = 100 M = 800 N = 20 −3.895132e−08 −1.5e−05
SINH-COS & TN L = 4 M = 50 N = 24 −3.89518983831e−08 −5.6e−08
SINH-COS & TN L = 4 M = 100 N = 24 −3.89519005746e−08 3e−13
SINH-COS & TN L = 4 M = 200 N = 24 −3.89519005746e−08 3.0e−13
SINH-COS & TN L = 6 M = 50 N = 24 −3.89511204033e−08 2.0e−5

ϵ = 1/1000 errors computed using −3.884668E−6 as ‘‘exact’’

Conf TB & TN L = 10 M = 400 N = 20 −3.88417526e−06 1.3e−4
Conf TB & TN L = 15 M = 400 N = 20 −3.88464267e−06 6.4e−6
Conf TB & TN L = 20 M = 400 N = 20 −3.88464140e−06 7.0e−6
Conf TB & TN L = 25 M = 200 N = 16 −3.88463041e−06 1.0e−5
Conf TB & TN L = 30 M = 200 N = 16 −3.88463476e−06 8.5e−6
Conf TB & TN L = 30 M = 400 N = 20 −3.88462062e−06 1.2e−5
Conf, SINH-COS & TN L=5 M = 200 N = 20 −3.88466781e−06 4.9e−8
Conf SINH-COS & TN L=6 M = 100 N = 20 −3.8846675e−06 1.3e−7
Conf SINH-COS & SINE L=6 M = 100 N = 16 −3.88466916e−06 3.1e−7
Conf, SINH-COS & TN L=8 M = 100 N = 20 −3.88466793e−06 1.8e−8
Conf, SINH-COS & TN L=8 M = 200 N = 25 −3.88466693e−06 2.8e−7
Conf, SINH-COS & SINE L=5 M = 50 GAL 1 −3.8846500e−06 4.6e−6
Conf, SINH-COS & SINE L=5 M = 100 GAL 1 −3.8846573e−06 2.8e−6

ϵ = 1/100

SINH-COS & TN L = 6 M = 50 N = 24 −0.000378313474209 −2e−05
SINH-COS & TN L = 6 M = 100 N = 24 −0.000378320991591 −2.3e−10
SINH-COS & TN L = 6 M = 200 N = 24 −0.000378320991676 0
Conf TB & TN L = 10 M = 10 N = 20 −0.000216974425828 −0.4265
Conf TB & TN L = 10 M = 20 N = 20 −0.000370256739341 −0.02132
Conf TB & TN L = 10 M = 30 N = 20 −0.000377709097205 −0.001617
Conf TB & TN L = 10 M = 50 N = 20 −0.000378314016604 −1.844e−05
Conf TB & TN L = 10 M = 60 N = 20 −0.000378321481908 1.296e−06
Conf TB & TN L = 5 M = 100 N = 20 −0.000378317262797 −9.856e−06
Conf TB & TN L = 5 M = 200 N = 20 −0.000378316895749 −1.083e−05
Conf TB & TN L = 10 M = 100 N = 20 −0.00037831654112 −1.176e−05
Conf TB & TN L = 20 M = 100 N = 20 −0.000378315252239 −1.517e−05
Conf TB & TN L = 50 M = 100 N = 20 −0.000368892634683 −0.02492
Conf TB & TN L = 50 M = 200 N = 20 −0.000378281933729 −0.0001032
Conf TB & TN L = 50 M = 300 N = 20 −0.000378317513349 −9.194e−06
Conf TB & TN L = 100 M = 100 N = 20 −0.000232233699493 −0.3861
Conf TB & TN L = 100 M = 300 N = 20 −0.000377766505323 −0.001466
Conf TB & TN L = 100 M = 500 N = 20 −0.000378314775741 −1.643e−05

Our choices are either sin(nπY ) or the difference of two Chebyshev
polynomials of the same parity:

Φn ≡ Tn+1(z(Y )) − Tn−1(z(Y )) ⇔

Φn ≡ cos([n + 1]t) − cos([n − 1]t). (38)

Then, with W = 2/(B − A), the chain rule allows us to express
derivativeswith respect to the cross-channel coordinate Y in terms
of the following derivatives of the basis functions with respect to
the trigonometric coordinate t:

Φn,t = −(n + 1) sin([n + 1]t) − (n − 1) sin([n − 1]t) (39)

Φn,tt = −(n + 1)2 cos([n + 1]t) − (n − 1)2 cos([n − 1]t) (40)

φn,Y = −Φn,t
W

sin(t)
(41)

φn,YY =
{
sin(t)Φn,tt − cos(t)Φn,t

} W 2

sin3(t)
. (42)

The alternative basis is

sin(nπY ), n = 1, 2, . . . Y ∈ [0, 1]. (43)

Fourier sines are simple, individually satisfy the boundary condi-
tions, and are the cross-channel-dependent factors of the unper-
turbed eigenmodes. Therefore, Fourier functions have been widely
used in eigenvalue computations and boundary value solving even
in coordinates where periodicity is lacking, as in the cross-channel
coordinate Y here. Theory predicts that asymptotically for large
degree, a Fourier basis will converge at a rate proportional to an
inverse power of degree rather than exponentially.

Fig. 3 shows the spectral coefficients for each basis. The first
fifty are the Fourier cosine coefficients bsinp,1, p = 1...50 where

ψ(x, y) =

∑
p=1

∑
n=1

bsinp,n cos(p t(X)) sin(πny) (44)

for n = 1 [black] or of bChebp,n in

ψ(x, y) =

∑
p=1

∑
n=1

bChebp,n cos(p t(X)) (Tn+2(Y ) − Tn(Y )) (45)

for n = 1 [red]; the two curves are almost indistinguishable in
the leftmost quarter of the diagram. The Chebyshev coefficients
bChebp,n for n = 2, 3 are several orders of magnitude larger than the
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Fig. 3. Comparison of spectral coefficients for twodifferent cross-channel basis sets.
The spectral coefficients for all 200 basis functions are shown versus a single index
running from 1 to 200 over the entire two-dimensional basis for ϵ = 10−4 . The
red curve employed four Chebyshev basis functions, each of which is the difference
between two Chebyshev polynomials. The black curves with disks connect the
coefficients when the cross-channel basis functions are sin(π n Y/L), which are the
cross-channel factors of the unperturbed eigenmode. The Chebyshev polynomial
basis predicts δ = 0.0023 which is wrong even as to order of magnitude whereas
the sine basis yields δ = 0.334620 × 10−6 which contains five correct digits. Both
curves used fifty Fourier sinh-mapped cosines in the down-channel direction. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. Errors in δ, the correction to the ground state eigenvalue, for the asymmetric
waveguide with ϵ = 10−4 as calculated using M = 50 Fourier cosines cos(jt(X))
in the down-channel direction X where t = (1/6)arcsinh(X) and either a sine
basis in Y [black dot–dash curve] or a Chebyshev polynomial basis in Y with N
basis functions where in either case N is the horizontal axis. The errors in the
pseudospectral Chebyshev polynomial method [red curve with squares] decay
exponentially fast to ‘‘saturate’’when thenumber of basis functions reaches 11. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

coefficients bsinp,n. However, the X Fourier series for bChebp,n , n > 1
decrease much faster with increasing degree p in X than do their
counterparts for bsinp,n(X), n > 1.

6.1. One-term Galerkin sine approximation

The spectral coefficients show that the expansion in the cross-
channel coordinate Y is dominated by the lowest cross-channel
mode. (Collocation with many basis functions is applied in the
down-channel coordinate X .) This suggests that it is useful to look
at approximations that have few cross-channel modes, perhaps
even just a single mode.

The pseudospectral method is somewhat easier to program
than the Galerkin discretization because functions are evaluated
instead of integrated. The Galerkin method is almost always more
accurate, but the accuracy ratio is usually only a factor of two or

Fig. 5. Relative errors in δ for the asymmetric channel versus the perturbation
parameter ϵ. The relative error is defined as (δ(method) − δexact )/δexact where
‘‘method’’ is the perturbation theory [1], δ(perturbation) = 4π4ϵ2 , ‘‘variational’’
(from the same source) or ‘‘1-term sine-Galerkin’’. The ‘‘exact’’ answer, used to
compute errors, is defined as the best pseudospectral approximation for a given ϵ.

three. When the basis truncation is large, this accuracy difference
is usually insignificant because the pseudospectral method with
(N + k) basis functions is as accurate as the Galerkin method with
N basis functions where k ≪ N . When the basis is drastically
truncated, however, Galerkin’s higher accuracy is often worth the
bother.

A one-term Galerkin approximation to the partial differential
equation with a single sine function as the cross-channel basis,
that is, an approximation of the form ψ(X, Y ) = b1(X) sin(πY ),
generates the ODE eigenproblem in the unbounded, down-channel
coordinate X:

b1,XX − π2 b1 + E q(X)b1 = 0, b1(X) bounded as |X | → ∞ (46)

q(X) = 2
∫ 1

0
dY sin2(πY ) {1 + σ (X, Y )} . (47)

(This ODE is solved by a pseudospectral algorithm in X with M
sufficiently large so that all errors in this subsection are dominated
by the coarseness of the Y discretization.)

The inferiority of the Chebyshev basis to sines for ten or fewer
basis functions in the cross-channel coordinate Y is clearly illus-
trated by Fig. 4. Table 3 reiterates this by comparing the accuracy
of various Chebyshev truncations with the single sine-Galerkin ap-
proximation. Even ten Chebyshev basis functions are less accurate
than a single sine function.

Fig. 5 shows that even with just a single cross-channel basis
function, the Galerkin approximation is better than or equal to the
best variational estimates from [1] for all ϵ except ϵ = 1/10.

For larger N , however, the Chebyshev polynomial basis is al-
ways better because of its (much) faster rate of convergence.
(Note the tiny errors for N = 11 and N = 12 in the table.)
When moderate accuracy is acceptable, a one-term sine Galerkin
is more accurate and simpler than any Chebyshev approxima-
tion of comparable simplicity and number of basis functions, but
the Chebyshev basis is always asymptotically superior in the limit
N → ∞.

7. Rational Chebyshev functions vs. cosines-with-sinh-mapping
as the down-channel basis

7.1. Rational Chebyshev functions

We quote some facts and definitions collected in [2]. The ratio-
nal Chebyshev functions TBn(X; L) are a Fourier cosine series under
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Table 3
Relative error in computing δ, the correction to the ground state eigenvalue, for
ϵ = 1/10, 000 for various numbers of Chebyshev polynomial basis functions. All
calculations used 100 basis functions in X with the sinh-Fourier schemewithL. The
relative error with sin(πY ) as the single cross-channel basis function and a Galerkin
discretization is also shown.

N relative error in δ δ(N; ϵ)

1 4.8E05 −1.9
2 2.05E05 0.80
3 1.2E04 −0.046
4 596.6 −0.00232
5 20.3 7.5E−05
6 6.9 2.30E−05
7 0.116302648871 −4.336467E−06
8 0.036 −4.026818E−06
9 0.000397 −3.88312E−06

10 1.40E−04 −3.88412E−06
11 5.56E−07 −3.884672E−06
12 1.40E−08 −3.88467005455E−06
1-sine Galerkin 1.47E−05 −3.884657E−06

Table 4
Rational Chebyshev functions for the infinite interval: TBn(X). (For map parameter
L = 1.)

n TB2n(X)
[Symmetric about X = 0]

0 1
2 (X2

− 1)/(X2
+ 1)

4 (X4
− 6X2

+ 1)/(X2
+ 1)2

6 (X6
− 15X4

+ 15X2
− 1)/(X2

+ 1)3

8 (X8
− 28X6

+ 70X4
− 28X2

+ 1)/(X2
+ 1)4

10 (X10
− 45X8

+ 210X6
− 210X4

+ 45X2
+ 1)/(X2

+ 1)5

the change of coordinate

TBn(X; L) = cos(nt[X; L]) (48)

t = arccot(X/L) (49)

X = L cot(t) (50)

where t ∈ [0, π] is the ‘‘trigonometric coordinate’’ and X ∈

[−∞,∞] is the computational coordinate. It is typical for the ratio-
nal Chebyshev spectral coefficients to decrease at a ‘‘subgeometric’’
rate, that is, proportional to exp(−pnr ) for some constant p and
an exponent r < 1. ‘‘Root-exponential’’ convergence is the most
common case, errors falling as exp(−p

√
n).

Because the eigenfunctions of the perturbed domain are sym-
metric with respect to the down-channel computational X , the
basis can be restricted to rational Chebyshev functions of even
degree. The lowest six symmetric rational Chebyshev functions are
given in Table 4.

Derivatives can be evaluated by the chain rule. A Matlab func-
tion to evaluate the nth rational Chebyshev function and its two
derivatives is

function [TB , TBX , TBXX]= TBbasis (X , LL , n)
% input : X \ in [−oo , oo ] i s the coordinate
% LL > 0 i s the user−choosble "map parameter " .
% n i s the degree of the bas is function .
% output : TB i s TB(X , LL ) _n
% TBX i s the X−der ivat ive of TB(X , LL ) _n
% TBXX i s the second der ivat ive
% step one : convert to ‘ ‘ tr igonometric coordinate " t

t= acot (X/ LL )
TB = cos (n∗ t )

% step two: apply the chain rule
C=cos ( t ) ; S=sin ( t ) ;
TBt= n∗cos (n∗ t ) ; TBtt=−n∗n∗TB; % evaluate t−der ivat ives

TBX = − S ∗ S ∗ TBt / LL ; % convert to X−der ivat ives
TBXX = S∗S∗S∗ ( S∗TBtt + 2∗C∗TBt ) / ( LL∗LL ) ;

The interpolation points are the images of a uniform Fourier
grid, as is optimum for a basis of sines and cosines,

yj = L cot
(
π

2j − 1
2N

)
, j = 1, 2, . . .,N. (51)

The remaining steps are as described in the general, abstract treat-
ment of the pseudospectral method given earlier.

7.2. Fourier domain truncation with sinh change of coordinate

The alternative discussed here is domain truncation combined
with a Fourier basis in the coordinate t(X;L) where t results from
the change of coordinate

X = sinh(L t) (52)

where L is a positive constant, the ‘‘sinh-scaling parameter’’. The
domain is truncated to the images of t = ±π under the mapping

X ∈ [−Xmax, Xmax] (53)

Xmax = sinh(Lπ ) ≈ (1/2) exp(−Lπ ). (54)

This will be dubbed the ‘‘sinh-Fourier’’ method or, when the so-
lution is symmetric about X = 0 and the basis can be restricted
to cosines only, the ‘sinh-cosine’’ method. The waveguides below
are symmetric with respect to the origin, and so, too, is the ground
state eigenfunction. This can exploited by (i) restricting the grid
to X ≥ 0 and (ii) using only even rational Chebyshev functions,
TB2n(X; L), or a Fourier cosine basis cos(n arcsinh(X/L)).

Theory asserts that as n → ∞, the sinh-Fourier/sinh-cosine
method should be superior to the rational basis expansion [11,12].
However, this is an asymptotic prediction, and sometimes true only
for impractically huge n [13]; experimentation in the context of a
specific application is the final arbiter for that application.

To analyze errors in the sinh-Fourier scheme, we need a slight
generalization of the Fourier domain truncation theory of [14],
which does not incorporate a change of coordinate as used here.
The error theorem proved there can be generalized as follows.

Theorem 1 (Fourier Truncation Error). Let the mapping function be

X = f (t), t ∈ [−π, π]. (55)

Let Xmin = mint∈[−π,π ](X(t)) and Xmax = maxt∈[−π,π ](X(t)). Ap-
proximate a function u(X) by a Fourier series in t within the truncated
domain and approximate the function by zero outside the truncated
domain:

u(X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a0 +

∞∑
n=1

an cos(nf −1(X)) +

∞∑
n=1

bn sin(nf −1(X)),

X ∈ [−Xmax, Xmax]

0, |X | > Xmax

where f −1 is the inverse of f (t). If u is not periodic in t, then as
n → ∞,

an ∼
(−1)n {ft (π )uX (f (π ))− ft (−π )uX (f (−π ))}

π N2 (56)

bn ∼
(−1)n+1 {u(f (π )) − u(f (−π ))}

π N
. (57)

Proof. Theorem 2 of [14] followed by application of the chain
rule. ■

For the sinh-mapping, X = sinh(L t), specializing to problems
symmetric about X = 0, the theorem gives

an ∼
2
π

(−1)n L cosh(Lπ )
uX (sinh(Lπ ))

N2 . (58)
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We can now return to the questions: Why is the sinh-Fourier
method superior for sufficiently large n, andwhy is the rate of con-
vergence of the rational Chebyshev series only ‘‘root-exponential’’
instead of the usual geometric convergence (proportional to
exp(−pn))? A brief answer is that even when the domain is not
explicitly truncated, any scheme with grid points is implicitly
truncated to the ‘‘span’’ of the grid points, which we define as
the interval between the largest and smallest grid points. It is
absurd to suppose that any interpolation scheme can be accurate
beyond the interval where interpolation constraints are imposed.
This truncation, either explicit or implicit, to |X | < Xmax, implies
an error of O(max|X |>Xmax (|u(X)|)).

To approximate a function like, say, sech(X), a numerical
scheme must bow to two masters. One is the need for increasing
the density of grid points to resolve finer and finer features of the
target function u(X). If h denotes the grid spacing near the origin
where the target function is largest, the spectral series truncation
error will fall like exp(−q/h) for some constant q, regardless of
the basis. On a finite interval, h is inversely proportional to N ,
the truncation of the spectral series. However, on an unbounded
interval, decreasing the grid spacing as 1/N does not converge the
error to zero, but only to the domain truncation error, O(u(Xmax)).
The other master that the numerical scheme must honor is that
to approximate a function over the entire real axis in the limit
N → ∞, the span of the grid points, that is, the interval spanned by
the line segment connecting the smallest interpolation point to the
largest, must increase steadily with finite but increasing N . If u(X)
is decreasing with X , then increasing the largest grid point Xmax
will decrease the domain truncation error, which is O(u(Xmax)), or
simply |u(Xmax)| if U(X) decays monotonically with increasing |X |.
To converge to zero error, one must somehow increase both the
span of the grid and the density of the grid points simultaneously.
For sech(X), the best compromise is toweight these factors equally
so that

h ∼ constant /
√
N & Xmax ∼ constant

√
N. (59)

Then both exp(−q/h) and sech(Xmax) ∼ (1/2) exp(−Xmax) decay
as N → ∞ with ‘‘root-exponential’’ convergence, that is, propor-
tional to exp(−constant

√
N).

The sinh-Fourier method is better because for sufficiently high
degree, Xmax increases exponentially with L, and only a small
increase of L will produce a huge decrease in the domain trun-
cation error. For a function like u(X) = sech(X), u(Xmax) ∼

exp(− exp(Lπ )). This exponential-of-exponential growth of the
domain truncation implies that a slow logarithmic increase of L
with N such as L = log(q′N)/π , where q′ is a positive constant,
will yield a domain truncation error that is exponential in N . The
grid spacing in the neighborhood of t = X = 0 is proportional to
L/N , so a logarithmically increasing L implies that exp(−q/h) ∼

exp(−qπ N)/log(q′N), which is not quite geometric convergence,
but falls short only by the logarithm. This rate of convergence is
‘‘quasi-geometric’’ [12,15].

If the desired error tolerance is an accuracy of 10−d, that is,
d decimal digits, then the best practical strategy is to choose the
smallest map parameter L for the sinh-Fourier method such that
the domain truncation error is less than 10−d. Here, we simply
experimented with various combinations of L, M and N , pursuing
approximations whose accuracy was limited not by the choice of L
but rather by floating point round off error.

In the cross-channel direction, we found that increasing the
number of Chebyshev polynomials in Y reached a plateau when
N = 12 for the sinh-Fourier method. A similar flattening of the
error-versus degree curve occurred at slightly larger truncations,
N = 14 to N = 16, when the X basis is a set of rational Chebyshev
functions. To assess the relative merits of the two contending

Fig. 6. Errors in the ground state eigenvalue as computed by the TB basis [red] and
the sinh-domain-truncation-Fourier-cosine basis [black curve with disks]. M = 50
down-channel basis functionswere combinedwithN = 16 Chebyshev polynomials
as the cross-channel basis. Note that the map parameter values for the sinh-Fourier
method have been scaled bymultiplication by a factor of 7 to facilitate comparisons;
the unscaled values are the labels on the upper axis. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

infinite interval basis sets, we fixed N at these limiting values and
then variedM and L.

Compared to the sinh-Fourier computations, the rational TB
calculations used double the down-channel truncation M , but the
minimum error is still considerably larger for the rational basis as
illustrated in Fig. 6. Boyd showed in [16] that the optimummap pa-
rameter L varies strongly with the truncation M; this is confirmed
in Fig. 6 and also by the heavy dashed line which connects the
optima for differentM in Figs. 7 and 8.

The error contours for the rational Chebyshev basis are very
smooth. Again as explained in [16], the error is a smooth analytic
function of L for a given truncation M , so the error contours are
smooth and flat around the best value of L where the derivative
of the error with respect to L is zero. Choosing L to be double or
half the best value for a given M increases the error only slightly
from the error of the best choice of L. A plot of TB error versus L is
U-shaped as seen in Fig. 6.

In contrast, errors in the sinh-Fourier scheme are the sum of
two independent analytic functions. One is the domain truncation
error ED, which is the maximum of the solution u(X) outside the
truncated domain |X | ≤ sinh(Lπ ). The other is the series trun-
cation error ES(M) which is the difference between the truncated
Fourier series and u(X). These two errors are independent analytic
functions, one increasing exponentially with Lwhile the other de-
creases exponentially fast with the parameter. The sum of the two
errors is V-shaped (slightly rounded by roundoff error in Fig. 6).

In the right contour plots of Figs. 7 and 8, the error is domi-
nated by domain truncation error for L < 3, the error contours
are vertical, and therefore independent of M because the series
truncation errors (tiny) have little to do with the total error. For
L > 3, however, the series truncation error dominates. The
optimum choice of map parameter is slightly larger than 4 with
little dependence onM .

Table 2 shows that it is possible to achieve high accuracy with
either basis.

7.3. Hermite functions

For variety, we also applied a Hermite pseudospectral method
with basis functions ψm(αy) [2,4] where α is a user-choosable
scaling constant analogous to L or L. Fig. 9 shows that a relative
error of 10−6 is possible for relatively large ϵ.
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Fig. 7. Isolines of the relative error, (δbenchmark
− δnumerical)/δbenchmark , for the change in the ground state eigenvalue induced by the perturbation when ϵ = 1/10,000.

All calculations used Chebyshev polynomial basis functions in Y . The left contour plot shows the error of a basis of rational Chebyshev functions TBm(X; L) where
m = 0, 2, 4, . . . (2M − 2). The thick dashed line connects the values of the map parameter L which are optimal for various truncations M . Right panel: the same except
for a down-channel basis of Fourier cosines with domain truncation after application of the sinh map with various values of the map parameter L.

Fig. 8. Same as previous figure but with ϵ decreased to ϵ = 1/100,000. Isolines of the relative error, (δbenchmark
− δnumerical)/δbenchmark . The left contour plot shows the error

of a basis of rational Chebyshev functions TBm(X; L) where m = 0, 2, 4, . . . (2M − 2). The thick dashed line connects the values of the map parameter L which are optimal
for various truncations M . Right panel: the same except for a down-channel basis of Fourier cosines with domain truncation after application of the sinh map with various
values of the map parameter L.

Fig. 9 is similar to previous contour plots except that the basis
in the unbounded, down-channel coordinate has been changed to
Hermite functions. The figure shows an accuracy of 1 part in a
million for the correction to the eigenvalue. However, no obvious
improvement or advantageswere seen in comparisons to the sinh-
Fourier and rational Chebyshev methods. Indeed, a rerun of this
case with all the same except for ϵ reduced to 1/10,000 yielded
relative errors greater than one everywhere. We shall be content
with this single figure.

7.4. Condition numbers

In recent years, as Chebyshev spectral methods are applied to
more and more challenging problems, there have been concerns
about the mild ill-conditioning of Chebyshev discretizations. This
has inspired a revival of Petrov–Galerkin methods that, among
other virtues, greatly reduce condition numbers [17,18].

However, the concentration of grid points near the boundaries,
associated with very rapid oscillations near the endpoints, is a
vice only of Chebyshev polynomials. The grids associated with the
rational Chebyshev functions and the Fourier domain truncation
with sinh change of coordinate, are roughly uniform with a grid
spacing O(1/N) near the center of the domain, and then become
sparser and sparser as |X | → ∞.

Table 5 shows that the condition number of the discretization
matrix for the Laplace operator is a function almost entirely of

Fig. 9. Isolines of the relative error, (δbenchmark
− δnumerical)/(δbenchmark), for various

numbers of functions when ϵ = 1/100. All calculations used Hermite functions
ψm(αX) where α is the scaling parameter, a user-choosable constant, and where
m = 0, 2, 4, . . . (2M−2). ThemthHermite function is the product of exp(−[1/2]Y 2)
with the Hermite polynomial of degreeM .

N , the number of Chebyshev polynomials in the cross-channel
direction. Both the rational Chebyshev basis and sinh-Fourier basis
are well-conditioned. Condition number cannot be used to prefer
one infinite interval discretization over another.
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Table 5
Condition Number of the Discretization of the Laplace Operator H = ∂XX + ∂YY
Chebyshev polynomial basis functions were the cross-channel basis. M and N are
the number of basis functions in the unbounded, down-channel coordinates X and
in Y , respectively.

Condition number M N

Fourier cosine basis in X with sinh map with L = 6

97.0 50 8
97.0 100 8
122.1 200 8
626.3 50 16
626.3 100 16
626.3 200 16
4532.1 50 32

Rational Chebyshev functions TB(X; L) with L = 20

18.9 50 4
96.9 50 8
96.9 100 8
625.6 50 16
4527.2 50 32

Fig. 10. The computational domain for the immersed boundary method is a strip
of uniform width of [−∞,∞] ⊗ [0, 1 + ϵg(0)] where g(0) is the maximum of the
function g(t) which describes the bulge in the top boundary of the waveguide. The
physical domain is shaded, bounded by y = 1 + ϵg(t) [thick pink curve]. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

8. The immersed boundary method

Fig. 10 illustrates the physical domain [shaded] and compu-
tational domain [infinite rectangle of uniform width] for the im-
mersed boundary method. No change of coordinate is necessary,
and thus X = x and Y = y. The computational domain completely
encloses (‘‘immerses’’) the physical domain.

By using the implicitization procedure described in the
Appendix, the variation of the upper boundary of the waveguide
with the down-channel coordinate X is obtained as

ytop = 1 + ϵ
sin (2)

d
+ ϵ2 2

sin (2) (sinh (2 X))2

d3
+ O(ϵ3) (60)

d = cos (2)+ cosh (2 X) . (61)

The maximum deviation of the upper wall is

ymax = max
x

(ytop(x)) = ϵ
sin(2)

cos(2) + 1
≈ 1.557ϵ. (62)

The physical domain is then embedded into a computational do-
main which is [0,∞]⊗ [0, ymax]. (Because the wall perturbation is
symmetric about x = 0, all eigenmodes have definite parity with
respect to x = 0; by employing a basis of functions symmetric
in x, we restrict the numerical domain to x ≥ 0.) No coordinate
change is necessary; spectral methods are happy with rectangular
domains. But how can we impose Dirichlet boundary conditions
on a curve that does not coincide with the boundaries of the
computational domain?

The answer is that we assume a solution in the form

ψ(x, y) = B(x, y)v(x, y) (63)

where v(x, y) is an unconstrained sum of tensor product basis
functions and where B(x, y) = 0 everywhere on the boundaries
of the asymmetric waveguide. To mimic the sinusoidal structure
of the unperturbed ground state, we used

B(x, y) = sin
(
π

y
ytop(x)

)
. (64)

The partial differential equation for v is

B
{
vxx + vyy

}
+ 2Bxvx + 2Byvy +

{
Bxx + Byy

}
v + EBv = 0. (65)

Construction of the immersed boundary pseudospectral matrix is
more expensive than for the analogous matrix of the conformal
mapping approach because it is necessary at each point of the
tensor product grid to evaluate v and its two first derivatives and
also B and four of its derivatives. However, the resulting numerical
eigenmodes will vanish at all points on the boundaries and a
coordinate change was not needed.

Table 6 shows that, with the bulging wall parameterized as
a function y(x) using the non-perturbative series method of Ap-
pendix, the immersed boundary method gives exactly the same
numbers to all digits shownas does conformalmapping. The choice
between the two strategiesmust be based on convenience and ease
of programming, not accuracy.

9. Timings and extensions to very large N

Although only approximations to the lowest eigenvalue are re-
ported, we had no difficulty in computing many eigenvalues using
theQZmethod to calculate all eigenvalues of the discretizationma-
trix. The techniques of discriminating betweenmatrix eigenvalues
which are accurate and inaccurate approximations to eigenvalues
of the differential equation are explained in Chapter 7 of [2] and
in [19]. Unfortunately, the cost is about O(10M3N3) operations for
a matrix of dimension Ntotal = M × N .

Inmost ‘‘bentwaveguide’’ problems, however, only the ground-
state eigenvalue is of interest. One can enormously reduce execu-
tion time by using one-or-a-few eigenvalue solvers such as those
based on the Lanczos or Arnoldi algorithms. In Matlab, it is merely
necessary to replace eig(AA,BB) by eigs(AA, BB, 1, lambda0).
where λ0 is an approximation to the targeted eigenvalue. Here, the
perturbatively-predicted eigenvalue is always a very good initial-
ization.

High-order perturbation theory may require accuracy beyond
the limits of Matlab, or pseudospectral matrices too big for a
workstation’s memory or both. It is important to note that it is
never necessary, with Arnoldi/Krylov space methods, to explicitly
compute the pseudospectral matrix. All that is needed is the vector
which is the matrix–vector product of the pseudospectral matrix
with the vector of spectral coefficients. Thismatrix–vector product
is just the spectral residual of the differential equation and can
be computed without matrices using the Fast Fourier Transform
(Chap. 15 of [2].) Navarra expressed this happy reality nearly thirty
years ago [20]:

one feature that makes this method very suitable . . . is that the
matrix A need not be stored . . .only the vectors Ax are needed.
. . . this operation may be performed numerically by using a lin-
earized version of a [mixed spectral-finite difference] General
Circulation Model. (pg. 144 of [20]).

Unfortunately the Arnoldi iteration is not enough. Xue and
Elman write in the introduction to [21]:

Many scientific and engineering applications require a small
group of eigenvalues closest to a specified shift or those with
largest or smallest real parts. The shift-invert and Cayley
transformations are the two most commonly used spectral
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Table 6
Comparison between the conformal mapping strategy and the immersed boundary strategy: Computed eigenvalue
changes δ in the ground state for various basis sets in various truncations where δ = π2

− E for ϵ = 1/1000.
‘‘Conformal’’ and ‘‘Immersed’’ indicate which strategy was applied. M is the number of Fourier cosine basis functions in
the down-channel direction after the X coordinate was transformed by the hyperbolic sine mapping ; N is the number
of Chebyshev polynomials in the cross-channel basis; L is the scaling factor used in the hyperbolic sine mapping.

Method and basis L M N |δ| rel. error

Conformal map L = 6 M = 50 N = 24 0.000378313474209 −2e−05
Immersed L = 6 M = 50 N = 24 0.000378313474209 −1.9871e−05
Conformal map L = 6 M = 100 N = 24 0.000378320991591 −2.3e−10
Immersed L = 6 M = 100 N = 24 0.000378320991591 −2.2591e−10
Conformal map L = 6 M = 150 N = 24 0.000378320991676 0
Immersed L = 6 M = 150 N = 24 0.000378320991676 0
Conformal map L = 6 M = 200 N = 24 0.000378320991676 0
Immersed L = 6 M = 200 N = 24 0.000378320991676 0

transformations to map these eigenvalues to the dominant
ones of the transformed operator, so that they can be readily
computed by eigenvalue algorithms. Themajor challenge of this
approach is that a linear system of equations involving a shifted
matrix needs to be solved in each step (outer iteration) of the
eigenvalue algorithm.

What they mean is that the Arnoldi and Lanczos iterations are, in
their simplest form, variants of the Power Eigenvalue Method in
that they compute the eigenvalue of largest magnitude. For bent
quantum waveguides, the relevant eigenvalue is the smallest. The
‘‘shift-invert’’ strategy is based on the fact that the groundstate
eigenvalue is the largest eigenvalue of the inverse of the matrix af-
ter the eigenvalue has been shifted. Thus, to compute the smallest
eigenvalue of Av = λBv, the Arnoldi algorithm is applied to

(A − λ0B)−1Bv =
1

λ− λ0
v (66)

where the shift λ0 is an approximation to the desired eigenvalue
λ. The property that large matrices such as A and B and so on
need never be explicitly computed or stored can be preserved
by performing all matrix inversions, etc., through preconditioned
iterations.

Our paper would be incomplete without this discussion of the
fact that FFT and Arnoldi methods can extend our spectral method
to much larger numbers of basis functions than displayed in our
tables. However, such fast but complicated algorithms were not
needed here.

Fig. 11 shows that theQZ algorithm is indeed cubic in thematrix
size. The discretization matrices are dense matrices of dimension
M ×N with 2M2N2 matrix elements combined. The cost of assem-
bling the matrix directly as done here also scales as O(N2

total); as
noted just above, this cost can be reduced by an order ofmagnitude
by Arnoldi/FFT methods which do not explicitly construct the ma-
trix. We preferred overnight runs to the additional programming
effort and used the slower set-up, element-by-element, in our
program.

The single-eigenvalue computation has the same scaling with
N and M as the non-FFT assembly of the eigenvalue matrices, but
with a proportionality constant an order of magnitude smaller.

Table 7 gives a few numerical values. With 160 basis functions
in X and 25 in Y , there are a total of 4000 basis functions. Com-
puting all the eigenvalues of the 4000 × 4000 generalized matrix
eigenproblem takes about 2 min. Extrapolating to larger matrix
sizes using the cubic scaling, a 10,000 × 10,000 matrix would
require about fifteen times as many floating point operations and
can be completed in a little less than eight hours, an overnight run.
However, to find just one eigenvalue with 4000 unknowns takes
[adding setup time to the cost of Arnoldi eigensolver] only 6.5 s,
and about six times as much (forty seconds) for Ntotal = 10,000.

Fig. 11. The dashed lines are power-law fits; the upper dashed line (blue) is
N3
total while the lower line is N2

total . The cost of the QZ method, applied to find all
eigenvalues and eigenfunctions, is cubic in matrix dimension while the other two
procedures are only quadratic. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

10. Summary

We have developed strategies and multiscale spectral algo-
rithms to solve the stationary Schrödinger equation (Helmholtz
equation) in a waveguide which is a small perturbation of an
infinitely long strip of uniformwidth. Amajor numerical challenge
is that in the down-channel coordinate, there are two distinct
spatial scales that differ by O(1/ϵ). These spatial scales do not
apply in different and distinct regions, as true for boundary layer
flows, but rather are commingled in the neighborhood of the wall
perturbation. We show that classical spectral methods are quite
adequate for this problem if the tensor product basis is highly
anisotropic and wisely chosen.

We compare two strategies for coping with the perturbed
boundary. The first strategy is to use a conformal mapping to
transform the physical domain into a computational domainwhich
is identical in shape ( a rectangle) to the unperturbed waveguide.
For strongly deformed domains, conformal mapping is not usually
a good option for grid generation because the user has little control
over the density of grid points. However,when the conformalmap-
ping is only a small perturbation of the identity transformation, this
difficulty ismissing. It is likely that one can generate the conformal
maps by perturbation theory as in [7], thoughwe have not pursued
this. For a general coordinate mapping, the transformed equation
is awash with messy, coding-error-producing metric factors. With
a conformal mapping, however, the Schrödinger equation is mod-
ified only in that the eigenvalue is multiplied by a map-dependent
function 1 + σ (X, Y ).
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Table 7
Timings (in seconds) on an HP420 workstation running Windows 7 and Matlab 2012.

M N Ntotal Time: QZ Time: 1 eigenvalue Time: matrix creation

40 25 1000 14.8 0.089 0.07
80 25 2000 146.5 0.33 1.2

120 25 3000 570.3 0.77 2. 7
160 25 4000 1494.0 1.5 5.0

The second strategy is to embed the deformed domain inside
the uniform strip (no longer of unit cross-channel width) and solve
the problem without mapping. Boundary conditions are imposed
by writing the unknown as ψ(x, y) ≡ B(x, y)v(x, y) where the
boundary is the curve B(x, y) = 0 and v(X, Y ) is computed by the
pseudospectral method unconstrained by boundary conditions.

Both strategies allow a tensor product basis and grid. This is
good both for efficiency and ease-of-programming. We compared
a variety of basis functions to arrive at the following.

1. When a conformal map from this physical domain to a
uniformwaveguide is available, there is only a single metric
factor and the pseudospectral code is very simple and reli-
able.

2. Fourier domain truncation combined with the change of
coordinate X = sinh (L t) gives much faster convergence
than the rational Chebyshev basis TBn although the latter
also converges exponentially fast.

3. Chebyshev polynomials in the cross-channel coordinate Y
converge much faster than sine functions even though the
latter are the unperturbed normal modes.

4. Using a single sine function sin(πY ) in the cross-channel
coordinate with a Galerkin discretization in this coordinate
gives approximations that are remarkably good, more ac-
curate than variational eigenvalue estimates for all ϵ and
improving upon lowest order perturbation theory until ϵ
is very, very tiny. More cross-channel sine functions pro-
duce little improvement while the Chebyshev polynomials
decrease exponentially until the error curves for the two
different Y basis sets merge, being constrained for N > 10
by the down-channel (X coordinate) resolution.

5. For sufficiently small perturbation parameter ϵ, the pertur-
bation theory is always better because the spectral methods
are limited by roundoff error, though not severely; ten digits
of accuracy for the ground state eigenvalue in sixteen deci-
mal place floating point arithmetic was the normal roundoff
limit for our example.

6. The immersed boundary method worked well, but the
Krylov strategy of implementing boundary conditions re-
quires evaluating additional derivatives of the unknown and
all derivatives up to second order for B(x, y), the function
whose zero contours implicitly determine the boundaries.
Conformal mapping is simpler whenever a conformal map
is available.

Checking perturbation problems is a demanding application
because perturbation theory is accurate only when the parameter
ϵ thatmeasures the strength of the perturbation is small. Recall the
definition that δ ≡ E(ϵ) − E(0) is the pertubation-induced change
in the eigenvalue. Perturbation theory shows that δ ∼ O(ϵ2). To
verify the perturbation theory, numerically-computed eigenvalues
must be accurate to within an error small compared to δ. It is
very difficult to achieve such high accuracy without a spectral
method.

All the calculations presented here used Matlab in the usual
sixteen decimal place floating point arithmetic. Although only
approximations to the lowest eigenvalue are reported, we had
no difficulty in computing many eigenvalues as discussed in the
previous section.

Inmost ‘‘bentwaveguide’’ problems, however, only the ground-
state eigenvalue is of interest. One can enormously reduce ex-
ecution time by using one-or-a-few eigenvalue solvers. In Mat-
lab, it is merely necessary to replace eig(AA,BB) by eigs(AA,
BB, 1, lambda0). where λ0 is an approximation to the targeted
eigenvalue, which need not be very accurate. The perturbatively-
predicted eigenvalue was always a very good initialization.

High-order perturbation theory may require accuracy beyond
the limits of Matlab, or pseudospectral matrices too big for a
workstation’s memory or both. It is important to note that it is
never necessary, with Arnoldi/Krylov space methods, to explicitly
compute the pseudospectral matrix. All that is needed is the vector
which is the matrix–vector product of the pseudospectral matrix
with the vector of spectral coefficients. Thismatrix–vector product
is just the spectral residual of the differential equation and can
be computed without matrices using the Fast Fourier Transform
(Chap. 15 of [2]) as discussed in the previous section.

It is annoying that both an inner and an outer iteration are
needed for huge Ntotal, but with such an approach, the spectral
methods described here can be extended on a desktopworkstation
to very large basis size Ntotal and extremely high accuracy.

In three dimensions, conformal mapping is not available except
for special cases. Non-conformal maps can be applied; the only
drawback is that there aremanymoremetric factors instead of just
one in the transformed PDE.

The immersed boundary method also applies in three dimen-
sions. It is necessary to compute many more derivatives of the
boundary function B(x, y, z), but no change in underlying princi-
ples.
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Appendix. Reparameterization by interpolation

In computer graphics, parametric and implicit descriptions of a
curve are both useful for different purposes, and a common task is
to convert fromone form to the other. One conversion strategy is to
parameterize y in terms of x by using an infinite series, preferably
the same type of series used as the down-channel basis. Let xk
denote the usual interpolation points associated with the basis. If
we set the parameter t equal to each of these points in turn, we
obtain the set of points

x̃k = xk + ϵ f (xk) (A.1)

ỹk = 1 + ϵ g(xk), k = 1, 2, . . . ,M. (A.2)

The x̃k differs from the xk only by O(ϵ), which implies that in-
terpolation at the x̃k inherits almost the same spectral accuracy
as interpolation at the canonical interpolation points. The upper
boundary has the series representation

y(x) =

M∑
m=1

ℵm χm(x) (A.3)

where the ℵm are the elements of a vector that solves a stan-
dard matrix problem whose right-hand side is the vector whose
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elements are ỹk and the elements of the Vandermonde matrix are
χcol(x̃row) where ‘‘row’’ and ‘‘col’’ are the row and column indices of
the matrix and the χm(X) are the basis functions in X , the same set
that was used to approximate ψ(X, Y ).

The interpolation series can be evaluated at the canonical inter-
polation points to compute y(x) with high accuracy at the points
where its values are needed for the pseudospectral discretization.
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