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Period doubling in period-one steady states
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Nonlinear classical dissipative systems present a rich phenomenology in their “route to chaos,” including period
doubling, i.e., the system evolves with a period which is twice that of the driving. However, typically the attractor
of a periodically driven quantum open system evolves with a period which exactly matches that of the driving.
Here, we analyze a periodically driven many-body open quantum system whose classical correspondent presents
period doubling. We show that by studying the dynamical correlations, it is possible to show the occurrence of
period doubling in the quantum (period-one) steady state. We also discuss that such systems are natural candidates
for clean and intrinsically robust Floquet time crystals.
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I. INTRODUCTION

Classical driven and dissipative systems present a varied
typology of dynamical behaviors. In these systems it is possible
to observe very different types of attractors: fixed points, limit
cycles, and chaotic attractors. For quantum systems, if in some
limit they can be reliably described by classical equations
of motion, it is also possible to observe signatures of these
behaviors (see, for example, Ref. [1]).

Important types of driven dissipative systems are those for
which the driving is time periodic. The steady state of such
systems, when unique, has a periodicity which is given exactly
by the period of the driving, even if the classical corresponding
system presents period doubling or is chaotic [2]. Hence these
systems deserve further investigations.

An important insight into quantum systems is given by two-
time correlations. For instance, current-current correlations
on a thermal state can be used to infer its linear response
transport properties. For the case of quantum steady states,
it was shown that the two-time correlations of a dissipative
engineered quantum state can be significantly different from
those of the target state [3].

Here, we show that by analyzing the two-time correlations
of periodic steady states, with a period exactly given by the
driving period, it is possible to observe a period doubling
in the evolution of the correlation. This occurs when the
corresponding classical system is in a parameter regime for
which period doubling occurs and when the effective Planck
constant is small enough that the quantum dynamics mimics the
classical dynamics for long enough times. The presence of an
underlying period doubling classical dynamics also naturally
allows one to interpret these systems as a clean Floquet time
crystal [4–9]. Moreover, the two-time correlation analysis of
the periodic steady state allows one to characterize it as an
intrinsically robust Floquet time crystal.

This Rapid Communication is divided as follows: In Sec. II
we introduce the model, then we describe its bifurcation map
in Sec. III, analyze the spectrum of the periodic propagator
in Sec. IV, and show the presence of period doubling in the
steady state in Sec. V. In Sec. VI we discuss that the system is

a natural example of a clean Floquet time crystal, and finally
in Sec. VII we draw our conclusions.

II. MODEL, PERIODIC STEADY STATE,
AND MEAN-FIELD EQUATIONS

We consider a double-well potential with N atoms which
is periodically driven and under the influence of dissipa-
tion. The system is described by a master equation whose
time-dependent generator Lt , of Lindblad form [10–13], is
composed of two parts,

˙̂ρ = Lt (ρ̂) = −i[Ĥ (t),ρ̂] + D(ρ̂). (1)

Note that we have set h̄ = 1. The first part of Eq. (1) describes
the Hamiltonian evolution of the system’s density operator ρ̂,
due to the Hamiltonian Ĥ (t). We consider a double well whose
Hamiltonian is

Ĥ (t) = −J (b̂†1b̂2 + b̂
†
2b̂1) + U

2

∑
j=1,2

n̂j (n̂j − 1)

+ ε(t)(n̂2 − n̂1), (2)

where b̂j (b̂†j ) annihilates (creates) a boson at site j , while

n̂j = b̂
†
j b̂j . The Hamiltonian parameters are J , the tunneling

amplitude, U , the interaction strength, and ε(t), the modulation
of the local potential. The modulation ε(t) is chosen to be
periodic of period T = 2π/ω, i.e., ε(t) = ε(t + T ) = μ0 +
μ1 sin(ωt), where μ0 and μ1 are, respectively, a static and a
dynamic energy offset between the two sites. This double-well
Hamiltonian has been investigated in both theoretical [14–17]
and experimental [18,19] works.

The second part of Lt in Eq. (1) describes the dissipative
evolution due to the dissipator,

D(ρ̂) = γ (2�̂ρ̂�̂† − {�̂†�̂,ρ̂}), (3)

where γ is the dissipative rate while the jump operator is given
by [20–23]

�̂ = (b̂†1 + b̂
†
2)(b̂1 − b̂2). (4)

This model has been investigated in Refs. [2,24].
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It was shown in detail in Ref. [2] that, given the periodicity
of Lt , it is possible to generate a Floquet map PF = P0,T ,

where Pt1,t2 = T e
∫ t2
t1

Lt dτ and T is the time-ordering operator.
The fixed point of this map is the periodic steady state of the
system ρ̂s(mT ), wherem is an integer number [25]. To compute
ρ̂s(t) at times t �= mT , it is sufficient to evolve ρ̂(0) from time
0 to t using Eq. (1).

An important insight into the dynamics of this system
is obtained, especially for a large number of particles, by
studying the corresponding classical mean-field equations of
motion. To compute them, it is convenient to first rewrite
Eq. (1) in terms of the spin operators Ŝx = 1

2N
(b̂†1b̂2 + b̂

†
2b̂1),

Ŝy = − i
2N

(b̂†1b̂2 − b̂
†
2b̂1), and Ŝz = 1

2N
(n̂1 − n̂2), and study

their evolution in the Heisenberg picture [13]. The commutator

between these operators is [Ŝx,Ŝy] = i
Ŝz

N
and cyclic permu-

tations. This implies that as N → ∞, these spin operators
commute, resulting in classical equations of motion (see
Ref. [2] for more details).

Since 〈Ŝ2〉 = 〈Ŝ2
z 〉 + 〈Ŝ2

x 〉 + 〈Ŝ2
y 〉 is a constant of motion

(we have used the notation 〈Ô〉 = tr [ρ̂Ô] for the expecta-
tion value of the operator Ô), it is possible to write the
mean-field equations of motion of the system in terms of
two angle variables θ and φ defined by (〈Sx〉 , 〈Sy〉 , 〈Sz〉) =
1
2 [cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ)]. We thus get the equa-
tions of motion [2],

ϑ̇ = 2J sin(ϕ) + 4γN cos(ϕ) cos(ϑ)

ϕ̇ = 2J
cos(ϑ)

sin(ϑ)
cos(ϕ)−2ε(t) + UN cos(ϑ)−4γN

sin(ϕ)

sin(ϑ)
.

(5)

III. BIFURCATION MAP

For a more complete and self-contained analysis, we now
study the quantum and classical bifurcation map for this
system in Fig. 1 [26]. More precisely, for the classical map
we evolve Eq. (5) for different initial conditions uniformly
distributed over ϑ ∈ [−π,π ] and φ ∈ [0,2π ] for t = 800T .
We then record stroboscopically at times which are integer
multiples of the driving period, t = mT , the value of ϑ [and
hence of 〈Ŝz〉 = 1/2 cos(ϑ)] for the next 200 (or more) periods
and represent them in Fig. 1(a). For a different interacting
model [27], a quantum bifurcation map was produced using the
trajectory method for the evolution of the density matrix [28].
In Figs. 1(b) and 1(c) we show the quantum bifurcation map
from another approach. For any given value of the interaction
we compute the steady state ρ̂s(0) and then we project it
over the eigenstates of Ŝz and take the trace. More precisely,
we can write Ŝz = ∑

n Ŝz
n, where Ŝz

n = (n/N − 1/2)|n,N −
n〉〈n,N − n| and the state |n,N − n〉 has n particles in site 1
and N − n in site 2. We thus compute 〈Ŝz

n〉s = tr [Ŝz
nρ̂s(0)]

and produce an intensity plot as a function of both 〈Ŝz
n〉s

and the interaction strength U/J . We have used the notation
〈· · · 〉s to remind the reader that the trace is taken over the
steady state. In Figs. 1(b) and 1(c) we show the bifurcation
map respectively for N = 25 and N = 100 atoms. For the
larger number of particles it is possible to see more clearly
the underlying structure related to the mean-field classical
corresponding equations.

FIG. 1. Bifurcation maps for (a) classical mean-field equations
(5), and (b), (c) a quantum system with respectively N = 25 and
N = 100. The other parameters are μ0 = J , μ1 = 3.4J , and γN =
0.1J .

IV. SPECTRUM OF THE FLOQUET MAP

A signature of the presence of a bifurcation in the classical
corresponding system leaves signatures in the spectrum of the
Floquet map PF . We thus compute the eigenvalues of PF ,
which we refer to as “Floquet rapidities” λj [29], for different
particle numbers and we plot them in a complex plane in Fig. 2.
In particular, Figs. 2(a)–2(d) correspond respectively to N =
10, 25, 50, and 100. Since the periodic steady state is unique,
one Floquet rapidity has exactly the value 1. We note that as
the number of particles increases, there is a Floquet rapidity
which approaches, but does not reach, the value −1 on the real
axis (we highlight this point in red). The presence of such a
slow decaying state with Floquet rapidity ≈ − 1 indicates that
dynamical properties can show an oscillatory behavior with a
period which is twice that of the driving.

V. TWO-TIME CORRELATIONS AND PERIOD DOUBLING

As stated before, the steady state is the fixed point of the
map PF , which implies that ρ̂s(mT ) = ρ̂s(0) for any integer
m. As a consequence, any static (i.e., single time) observable
computed on the steady state is exactly periodic with the period
of the steady state. More precisely, given an operator Ô, we
have that

〈Ô(mT )〉s = tr[Ôρs(mT )]

= tr[Ôρs(m
′T )] = 〈Ô(m′T )〉s , (6)
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FIG. 2. Real and imaginary parts of the spectrum of the Floquet
rapidities for (a) N = 10, (b) N = 25, (c) N = 50, and (d) N = 100.
The red dots in (c) and (d) represent the slowest decaying state. The
other parameters are μ0 = J , μ1 = 3.4J , UN = 0.2J , and γN =
0.1J .

with m′ �= m. It is very important to stress that this result
is independent of the underlying dynamics of the classical
corresponding system, and whether the classical attractor is
regular, with or without bifurcation, or chaotic.

In Sec. III we have also shown the quantum and classical
corresponding bifurcation map of this system. This shows that
at each period there is a multimodal probability distribution for
the distribution of particles between the two wells. However,
since this is a static observable of the steady state, it exactly
repeats itself at each period, i.e., this is not evidence of period
doubling.

In order to reveal the presence of period doubling, we need
instead to study dynamic correlations on the steady state. In
particular, we study the two-time correlation,

〈Ŝz(mT )Ŝz(0)〉s = tr[Ŝz(PF )mŜzρ̂s(0)]. (7)

We plot 〈Ŝz(mT )Ŝz(0)〉s in Fig. 3 as a function of time for
different total particle numbers N . Figure 3 demonstrates that
the two-time correlation evolves with a period which is twice
that of the driving T for an amount of time which becomes
longer the more atoms are in the system [30]. From our
previous analysis of the Floquet rapidities, we can understand
this behavior from the presence of a Floquet rapidity close
to −1. Once the operator Ŝz acts on the steady state, we
can write the resulting operator as a superposition of ρ̂j , the
eigenoperators of the Floquet propagator PF , with eigenvalues
(Floquet rapidities) λj , i.e., Ŝzρ̂s(0) = ∑

j cj ρ̂j , where the cj

are scalars. From this it is easy to show that the (stroboscopic)
time evolution of such an operator is given by

P0,mT [Ŝzρ̂s(0)] =
∑

j

cj ρ̂jλ
m
j . (8)
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FIG. 3. Two-time correlation 〈Ŝz(nT )Ŝz(0)〉s vs time for a total
particle number N = 5 (green circles), N = 25 (red triangles), and
N = 100 (blue squares). Other parameters are UN = 0.2J , μ0 = J ,
μ1 = 3.4J , and γN = 0.1J .

As shown in Fig. 2, for parameters such that the classical cor-
responding dynamics has bifurcation, and for a large enough
particle number, the spectrum of PF has, on top of the steady
state, another eigenvalue close to the unit circle which is
positioned close to the value −1. The periodic steady state
operator ρ̂s and the one corresponding to eigenvalue −1, i.e.,
ρ̂−1, will dominate the long-time dynamics [31],

P0,mT [Ŝzρ̂s(0)] ≈ csρ̂s + c−1ρ̂−1(−1)m. (9)

The second term on the right-hand side of Eq. (9) is the
one responsible of the period-two evolution of the two-time
correlation function 〈Ŝz(mT )Ŝz(0)〉s . In fact, this correlation,
at long enough times, can be approximated by

〈Ŝz(mT )Ŝz(0)〉s ≈ cs tr(Ŝzρ̂s) + c−1 tr(Ŝzρ̂−1)(−1)m, (10)

which oscillates with a period 2T , i.e., twice that of the driving.
The presence of an underlying classical period doubling

dynamics carries other interesting consequences. It has been
shown before that for a system in which both the Hamiltonian
and the dissipator are number conserving, two-time correlators
of the type 〈Â(t)B̂(0)〉 behave very differently depending on
whether or not the first operator included in the two-time
correlator B̂ is number conserving [3,32]. When the first oper-
ator is number conserving, it is possible to observe very slow
dynamics such as power-law decays, stretched exponentials,
and aging [3,17,33]. However, when the first operator is not
number conserving, the dynamics is bound to be an overall
exponential decay [3]. We then analyze the two-time correlator
〈b̂†2(t)b̂1(0)〉 in which each operator does not conserve the total
particle number and for which exponential decay is expected.

In Fig. 4 we depict |〈b̂†2(mT )b̂1(0)〉| versus the number of
periods m. In particular, we show in Figs. 4(a) and 4(b) the
case for which the corresponding classical dynamics has period
doubling, UN = 0.2J , while for the parameters of Figs. 4(c)
and 4(d), the classical mean-field equations predict chaotic
motion, UN = 1.6J . Figure 4(a) clearly shows signatures of
period doubling and also that the decay time scale increases
with the number of particles N . At the same time, the relaxation
is still exponential, as evidenced by the log-lin plot in Fig. 4(b).
In Figs. 4(c) and 4(d), for which the corresponding classical
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FIG. 4. Absolute value of the two-time correlator 〈b̂†
2(t)b̂1(0)〉 vs

number of periods m for different particle numbers N = 25 (red
squares with dotted-dashed line), N = 50 (green triangle with dashed
line), and N = 100 (blue circles with continuous line). In (a) and (b)
we show the case near a period doubling, UN = 0.2J , respectively,
in a lin-lin and in a log-lin plot. In (c) and (d) we show the case of
a chaotic region, UN = 1.6J , respectively, in lin-lin and in log-lin.
Other parameters are μ0 = J , μ1 = 3.4J , and γN = 0.1J .

equations are chaotic, we observe a much more rapid exponen-
tial decay, and no signatures of period doubling. This analysis
highlights that for large N not only is period doubling present
for number conserving operators, but also for non-number
conserving operators. The presence of a classical limit with
period doubling makes the dynamics particularly robust.

VI. BIFURCATION AS DRIVER OF CLEAN FLOQUET
TIME CRYSTALS

Clean Floquet time crystals are defined as systems which
in the thermodynamic limit fulfill the following properties:
(i) There is a quantity which does not evolve with the period
of the driving; (ii) it presents a periodic evolution without fine
tuning of the system parameters; and (iii) the periodic evolution
should persist for an indefinitely long time [6]. If a quantum
open periodically driven system has a classical correspondent
which is in a period-doubling regime, then it is straightforward
to show that there are initial conditions which are robust both
to changes in their exact position and of the system parameters,
and which show an evolution with a period different from the
driving in the thermodynamic limit. To show this, we take a
coherent state centered in one of the two periodic points of
the classical Poincaré section from Eq. (5) and we evolve it in
time. The coherent state is given by [34]

|φ(ϑ,ϕ)〉 =
N∑

n=0

fn(ϑ,ϕ)|n,N − n〉, (11)

where fn =
√(

N

n

)
[cos ( ϑ

2 )]
n
[sin ( ϑ

2 )eiφ]
N−n

. In Figs. 5(a)–5(f)
we show stroboscopic images of the state as it evolves in time.
Each panel is a Poincaré-Husimi section obtained by projecting
the evolving state over coherent states. In particular, we show
the Poincaré-Husimi section of the state for times t = 0, T ,
2T , 6T , 7T , and 8T . We can observe that the coherent state
jumps between two different positions, which is the expected
behavior for classical period doubling. Due to the finite number
of particles, we also observe a broadening of the state. In
Figs. 5(g) and 5(h) we focus on the stability of this dynamics.
In Fig. 5(g) we show the evolution of 〈Ŝz〉 versus time for
different initial conditions close to one of the classical periodic
points. In Fig. 5(h) instead we vary the system parameters, still
within the region of classical period doubling, and we observe
that the evolution is stable. As expected, the dynamics of this
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FIG. 5. (a)–(f) Poincaré-Husimi section of the evolution of a coherent state centered at one of the two classical periodic points of the classical
Poincaré map. In particular, the times are (a) t = 0, (b) t = T , (c) t = 2T , (d) t = 6T , (e) t = 7T , and (f) t = 8T . (g) and (h) show 〈Ŝz〉 at times
given by different integers of period t = mT . In (g) we show that the evolution shows an alternating evolution for different initial conditions. In
particular, we chose coherent states centered in the points (ϑ,ϕ) = (2,−3) (blue circles), (1.95,−3.05) (green triangles), and (2.05,−2.95) (red
squares). The strength of the interaction in (a)–(g) is UN = 0.2J . In (h) we show the robustness of the motion to different system parameters.
In particular, we evolve a coherent state centered at (ϑ,ϕ) = (2,−3) for parameters UN = 0.2J (blue circles), UN = 0.21J (green triangles),
and UN = 0.19J (red squares). Common parameters in (a)–(h) are μ0 = J , μ1 = 3.4J , γN = 0.1J .

020202-4



PERIOD DOUBLING IN PERIOD-ONE STEADY STATES PHYSICAL REVIEW E 97, 020202(R) (2018)

system fulfills the properties of a clean Floquet time crystal
[6]. However, it should be stressed here that, while such a
time crystal is robust against small changes of the parameters
and of the initial condition, it is not completely robust to the
initial condition. Instead, the steady state of the system is a
perfect example of a robust Floquet time crystal because it
is completely independent of the initial condition. We build
upon Ref. [35], where the authors defined a time crystal as
having long-range crystalline order in two-time correlations
(it is by this starting point that they proved the nonexistence
of quantum time crystals in equilibrium systems). Since the
two-time correlator on the steady state can manifest period
doubling, as shown in Fig. 3, the steady state is a Floquet
time crystal which, given an atom number N , is completely
independent of the initial condition.

Recently, we became aware of a partially related article [8],
which discusses the connection between Floquet time crystals
and bifurcations. However, this work does not study the
dynamical correlations of the system which are necessary to
establish the steady state as an intrinsically robust Floquet time
crystal.

VII. CONCLUSIONS

In periodically driven open quantum systems the density op-
erator of the steady state typically evolves with a period which
exactly matches that of the driving. This implies that static

observables measured on these steady states can also oscillate
at the same period, but not at multiples of it. Here, we have
presented clear signatures of period doubling in such steady
states when studying their dynamical correlations, and we have
shown that the period doubling is due to the dynamics of the
underlying classical correspondent system. The occurrence of
period doubling can be predicted by the presence of a Floquet
rapidity which approaches −1 and can induce oscillations of
period 2T in dynamic observables. We have also shown that
this open many-body quantum system can behave as a clean
Floquet time crystal. Moreover, characterizing a time crystal as
having long-range order in time [35], the (period-one) steady
state emerges as a Floquet time crystal which is completely
robust to initial conditions.

Future works could study the complete route to chaos in pe-
riodically driven many-body open quantum systems. Another
emerging important future direction is that of a many-body
periodically driven open system in the presence of disorder
[36,37], and, in particular, of how disorder affects the dynamics
here studied.
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