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We examine the quantum correlations of spin pairs in the ground state of finite XY
chains in a transverse field, by evaluating the quantum discord as well as other related
entropic measures of quantum correlations. A brief review of the latter, based on gen-
eralized entropic forms, is also included. It is shown that parity effects are of crucial
importance for describing the behavior of these measures below the critical field. It is
also shown that these measures reach full range in the immediate vicinity of the factor-
izing field, where they become independent of separation and coupling range. Analytical
and numerical results for the quantum discord, the geometric discord and other mea-
sures in spin chains with nearest neighbor coupling and in fully connected spin arrays
are also provided.
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1. Introduction

The last decades have witnessed the great progress experienced by the interdisci-

plinary field of quantum information science,1–3 which began with the recognition

of the potential of quantum systems and quantum correlations for information

processing tasks. While it is well known that quantum entanglement is essential

for quantum teleportation,4 superdense coding5 and also for achieving exponential

speed-up in pure state based quantum algorithms,6,7 the mixed state based quan-

tum algorithm of Knill and Laflamme8 showed that such speedup could in principle

be achieved in this case without a substantial presence of entanglement.9 This has

oriented the attention to alternative definitions and measures of quantum corre-

lations for mixed states, like the quantum discord.10–13 While coinciding with the

entanglement entropy for pure states, the quantum discord differs essentially from

the entanglement of formation in the case of mixed states, being nonzero in most
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separable mixed states and vanishing just for states which are strictly classically

correlated at least with respect to one of the constituents, i.e., diagonal in a stan-

dard or conditional product basis.10–12 The result of Ref. 15 showing the existence

of a finite discord between the control qubit and the remaining qubits in the cir-

cuit of Ref. 8, unleashed a great interest on this measure and several investigations

on its fundamental properties,16–19 on its evaluation on spin chains and specific

states20–28 as well as on related measures,29–34 have been recently made (see Ref.

35 for a recent review). Distinct quantum capabilities of states with nonzero discord

have also been recently investigated.36–39

Our aim here is to describe the remarkable behavior of the quantum discord

and of other related entropic measures of quantum correlations, in the exact ground

state of finite XY chains in a transverse field.24 We first provide in Secs. 2–5 a brief

review of the quantum discord and of the generalized entropic measures of quantum

correlations discussed in Refs. 33 and 34. The latter comprise as particular cases the

one-way information deficit36,40,41 and the geometric measure of discord of Ref. 32,

embedding them in a unified formalism based on majorization42–44 and general

entropic forms.45 While their basic features are similar to those of the quantum

discord, the possibility of using simple entropic forms permits an easier evaluation,

allowing for analytical expressions in some cases, as occurs with the geometric

discord of general two qubit states.32

We then use these measures to investigate, in Secs. 6–8, the quantum correlations

of spin pairs in the exact ground state of finite XY chains in a transverse field. We

review the main results of Ref. 24 on the behavior of the quantum discord in these

chains and also add new results concerning the behavior of the geometric discord

and other related measures in such chains. The exact ground state of a finite XY

chain in a transverse field has a definite spin parity and this fact will be seen to

deeply affect the discord and the previous measures for fields lower than the critical

field Bc. We will show that the essential results in this sector can be interpreted in

terms of the discord of mixtures of aligned pairs.

Moreover, these chains can exhibit a factorizing field Bs,
46–57 where they have

a completely separable ground state. For transverse fields, such eigenstate actually

breaks the previous parity symmetry and is hence degenerate, coinciding Bs in a

finite chain with the last crossing of the two lowest opposite parity levels.51 A related

remarkable effect is that in the immediate vicinity of Bs, pairwise entanglement,

though weak, reaches full range,49–51 regardless of the coupling range. Here we

will show that the quantum discord as well as the entropic measures of quantum

correlations also reach full range at this point, exhibiting universal features such as

being independent of separation and coupling range.24 Moreover, the value reached

by them at this point is nonnegligible and does not decrease with size, in contrast

with the pairwise entanglement, since these measures are not restricted by the

monogamy property58,59 which affects the latter (limiting the concurrence60,61 to

order n−1 in an n spin chain if all pairs are equally entangled). Consequently,

the behavior of these measures with the applied field and separation will deviate
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significantly from that of the concurrence or entanglement of formation for |B| <
Bs. Conclusions are finally discussed in Sec. 9.

2. Quantum Discord

The quantum discord was originally defined10–14 as the difference between two

distinct quantum versions of the mutual information, or equivalently, the con-

ditional entropy. For a classical bipartite system A + B described by a joint

probability distribution pij = p(A = i, B = j), the conditional entropy is de-

fined as the average lack of information about A when the value of B is known:

S(A|B) =
∑

j p
B
j S(A|B = j), where pBj =

∑

i pij is the probability of outcome j in

B and S(A|B = j) = −∑

i pi/j log pi/j is the Shannon entropy of the conditional

distribution pi/j = pij/p
B
j . It is a nonnegative quantity, and can also be expressed

in terms of the joint entropy S(A,B) = −∑

i,j pij log pij and the marginal entropy

S(B) = −∑

j p
B
j log pBj as S(A|B) = S(A,B) − S(B). Positivity of S(A|B) then

implies S(A,B) ≥ S(B) (and hence S(A,B) ≥ S(A)) for any classical system.

The last expression for S(A|B) allows a direct quantum generalization, namely

S(A|B) = S(ρAB)− S(ρB) , (1)

where S(ρ) = −Tr ρ log2 ρ is now the von-Neumann entropy and ρAB the system

density matrix, with ρB = TrA ρAB the reduced state of subsystem B. It is well

known, however, that Eq. (1) can be negative,42 being for instance negative in

any entangled pure state: If ρ2AB = ρAB, S(ρAB) = 0 and S(A|B) = −E(A,B),

where E(A,B) = S(A) = S(B) is the entanglement entropy.62,63 The positivity

of Eq. (1) provides in fact a basic separability criterion for general mixed states64:

ρAB separable ⇒ S(A|B) ≥ 0, a criterion which can actually be extended to more

general entropies.65–67 We recall that ρAB is separable if it can be written as a

convex combination of product states, i.e., ρAB =
∑

α qαρ
α
A ⊗ ραB, with qα ≥ 0,

∑

α qα = 1.68

A second quantum version of the conditional entropy, closer in spirit to the first

classical expression, can be defined10–12 on the basis of a complete local projective

measurement MB on system B (von-Neumann measurement), determined by one

dimensional orthogonal local projectors Πj = |jB〉〈jB |. The conditional entropy

after such measurement is:

SMB
(A|B) =

∑

j

pBj S(ρA/j) = S(ρ′AB)− S(ρ′B) , (2)

where pBj = Tr ρABΠ
B
j , with ΠB

j = IA ⊗ Πj , is the probability of outcome j,

ρA/j = TrB (ρABΠ
B
j )/p

B
j is the reduced state of A after such outcome and

ρ′AB =
∑

j

pBj ρA/j ⊗Πj =
∑

j

ΠB
j ρABΠ

B
j , (3)

is the average joint state after such measurement, with ρ′B = TrA ρ′AB =
∑

j p
B
j Πj .

Equation (2) represents the average lack of information about A after the measure-

ment MB in B is performed and is clearly nonnegative, in contrast with Eq. (1).

1345033-3

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
3.

27
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

63
.1

0.
1.

53
 o

n 
05

/2
9/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 31, 2012 10:10 WSPC/Guidelines-IJMPB S0217979213450331

N. Canosa, L. Ciliberti & R. Rossignoli

For a classical system, both quantities (1)–(2) are, however, equivalent. We also

mention that for general local measurements, defined by a set of positive opera-

tors Ej (
∑

j Ej = I), the first expression in (2) is to be used for SMB
(A|B) (with

Πj → Ej).

The quantum discord10–15 can then be defined as the minimum difference be-

tween Eqs. (1) and (2):

DB(ρAB) = Min
MB

[SMB
(A|B)]− S(A|B) , (4)

where the minimization is over all local measurements MB. Due to the concav-

ity of the von-Neumann conditional entropy (1) with respect to ρAB,
42 Eq. (4) is

nonnegative,10–12 vanishing just for classically correlated states with respect to B,

i.e., states which are already of the general form (3) (a particular case of separable

state) and which remain then unchanged under a specific unread local measurement.

Such states are diagonal in a “conditional” product basis {|ijj〉 ≡ |ijA〉 ⊗ |jB〉},
with |ijA〉 the eigenstates of ρA/j .

Equation (4) is then nonzero not only in entangled states but also in separable

states not of the form (3), i.e., those which involve convex mixtures of noncommut-

ing product states, for which the entanglement of formation69 vanishes. It is then

a measure of all quantum-like correlations between A and B. The distinction with

entanglement arises nonetheless just for mixed states: For pure states ρ2AB = ρAB,

S(ρAB) = 0 and S(ρ′AB) = S(ρ′B) for any von-Neumann measurement, reducing

the quantum discord exactly to the entanglement entropy: DA = DB = E(A,B).

Equation (4) can be of course also understood13,14 as the minimum difference

between the quantum mutual information42 I(A : B) = S(A)− S(A|B) = S(ρA) +

S(ρB)− S(ρAB), which measures all correlations between A and B (I(A : B) ≥ 0,

with I(A : B) = 0 if and only if ρAB = ρA ⊗ ρB) and the “classical” mutual

information IMB
(A : B) = S(A) − SMB

(A|B), which measures the correlations

after the local measurement MB.

3. Generalized Entropic Measures of Quantum Correlations

Let us now discuss an alternative approach for measuring quantum correlations,33

which allows the direct use of more general entropic forms. We consider a complete

local projective measurement MB (von-Neumann type measurement) on part B of

a bipartite system initially in a state ρAB, such that the post-measurement state

is given by Eq. (3) if the result is unread. A fundamental property satisfied by the

state (3) is the majorization relation1,42–44

ρ′AB ≺ ρAB , (5)

where ρ′ ≺ ρ means, for normalized mixed states ρ, ρ′ of the same dimension n,

i
∑

j=1

p′j ≤
i

∑

j=1

pj , i = 1, . . . , n− 1 .
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Here p′j , pj denote, respectively, the eigenvalues of ρ′ and ρ sorted in decreasing

order (pj ≥ 0,
∑

j pj = 1). Equation (5) implies that ρ′AB is always more mixed

than ρAB: If Eq. (5) holds, ρ
′
AB can be written as a convex combination of unitaries

of ρAB: ρ
′
AB =

∑

α qαUαρABU
†
α, with qα > 0,

∑

α qα = 1 and U †
αUα = I.1,42–44

Equation (5) not only implies that S(ρ′AB) ≥ S(ρAB) for the von-Neumann

entropy, but also:

Sf (ρ
′
AB) ≥ Sf(ρAB) (6)

for any entropy of the form45

Sf (ρ) = Tr f(ρ) , (7)

where f : [0, 1] → ℜ is a smooth strictly concave function satisfying f(0) = f(1) = 0.

As in the von-Neumann case, recovered for f(ρ) = −ρ log ρ, these entropies also

satisfy Sf (ρ) ≥ 0, with Sf (ρ) = 0 if and only if ρ is a pure state (ρ2 = ρ), and Sf (ρ)

maximum for the maximally mixed state ρ = In/n. Hence, Eq. (5) implies a strict

disorder increase by measurement which cannot be fully captured by considering

just a single choice of entropy (S(ρ′) ≥ S(ρ) does not imply ρ′ ≺ ρ). More generally,

Eq. (5) actually implies F (ρ′) ≥ F (ρ) for any Schur concave function F of ρ.43,44

Nonetheless, entropies of the form (7) are sufficient to characterize Eq. (5), in the

sense that if Eq. (6) holds for all such Sf , then ρ′ ≺ ρ.67

We may now consider the generalized information loss due to such

measurement,33

IMB

f = Sf (ρ
′
AB)− Sf (ρAB) , (8)

which is always nonnegative due to Eqs. (5)–(6), vanishing only if ρ′AB = ρAB due

to the strict concavity of f . Equation (8) is a measure of the information contained

in the off-diagonal elements 〈ij|ρAB|i′j′〉 (j 6= j′) of the original state, lost in the

measurement. The minimum of IMB

f among all complete local measurements,33

IBf (ρAB) = Min
MB

Sf (ρ
′
AB)− Sf (ρAB) , (9)

provides then a measure of the quantum correlations between A and B present in

the original state and destroyed by the local measurement in B: IBf ≥ 0, vanishing,

as the quantum discord (4), only if ρAB is already of the form (3), i.e., only if it is

diagonal in a standard or conditional product basis.

Again, in the case of a pure state ρAB = |ΨAB〉〈ΨAB|, it can be shown33 that

Eq. (9) reduces to the generalized entanglement entropy: IAf = IBf = Ef (A,B) if

ρ2AB = ρAB, where Ef (A,B) = Sf (ρA) = Sf (ρB). The minimizing measurement

in this case is the local Schmidt basis for |ΨAB〉: MB = {|kB〉〈kB|}, if |ΨAB〉 =
∑

k

√
pk|kA〉 ⊗ |kB〉.33

In the case of the von-Neumann entropy (Sf (ρ) = S(ρ)), Eq. (9) becomes the

one-way information deficit,36,40,41 which coincides with the different version of

discord given in Ref. 12 (and denoted as thermal discord in Ref. 35). It can be

1345033-5
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rewritten in this case in terms of the relative entropy42,70 S(ρ‖ρ′) = −Trρ(log ρ′ −
log ρ) (a nonnegative quantity) as:

IB(ρAB) ≡ Min
MB

S(ρ′AB)− S(ρAB) = Min
MB

S(ρAB‖ρ′AB) , (10)

where we have used the fact that the diagonal elements of ρAB and ρ′AB in the

basis where the latter is diagonal are obviously coincident. We also note that

for these measurements, the quantum discord (4) can be expressed as DB =

MinMB
[IMB (ρAB)− IMB (ρB)], coinciding then with IB when the minimizing mea-

surements in (10) and (4) are the same and such that ρ′B = ρB.

In the case of the linear entropy S2(ρ) = 1−Tr ρ2, obtained for f(ρ) = ρ(1− ρ)

(i.e., using the linear approximation log ρ → ρ− I in −ρ log ρ), Eq. (9) becomes33

IB2 (ρAB) ≡ Min
MB

Tr(ρ2AB − ρ′2AB) = Min
MB

‖ρ′AB − ρAB‖2 , (11)

where ‖O‖2 = TrO†O is the squared Hilbert Schmidt norm. This quantity be-

comes then equivalent to the geometric measure of discord introduced in Ref. 32.

The latter is defined as the last expression in Eq. (11) with minimization over all

states diagonal in a product basis, but the minimum corresponds to a state of the

form (3).33 For pure states, IB2 becomes proportional to the squared concurrence

C2
AB ,

60,61 as for pure states C2
AB is proportional to the linear entropy of any of the

subsystems.71

Finally, in the case of the Tsallis entropy72,73 Sq(ρ) = (1−Trρq)/(q− 1), q > 0,

which corresponds to f(ρ) = (ρ− ρq)/(q − 1), Eq. (9) becomes34

IBq (ρAB) = Min
MB

Sq(ρ
′
AB)− Sq(ρAB) ∝ Min

MB

Tr(ρqAB − ρ′
q
AB) , (12)

with Iq reducing to the one way information deficit for q → 1 (as Sq(ρ) → S(ρ)),

and to the geometric discord for q = 2. This entropy allows then a simple continuous

shift between different measures.

When considering qubit systems, we will normalize entropies such that Sf (ρ) =

1 for a maximally mixed two-qubit state ρ (i.e., 2f(1/2) = 1), implying that all IBf
will take the value 1 in a maximally entangled two-qubit state (Bell state). This

implies setting log ≡ log2 in the von-Neumann entropy, S2(ρ) = 2(1−Tr ρ2) in the

linear case (such that IB2 = 2MinMB
‖ρ′AB − ρAB‖2) and Sq(ρ) = (1 − Tr ρq)/(1 −

21−q) in the Tsallis case.

4. General Stationary Conditions for the Least Disturbing

Measurement

The stationary condition δIMB

f (ρAB) = 0 for the quantity (8), obtained by consid-

ering a general variation δ|jB〉 = (eiδhB −I)|jB〉 ≈ iδh|jB〉 of the local measurement

basis, where hB is an hermitian local operator, reads34

TrA[f
′(ρ′AB), ρAB ] = 0 , (13)
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i.e.,
∑

i[f
′(pij)〈ijj|ρAB|ijk〉 − f ′(pik)〈ikj|ρAB|ikk〉] = 0, where f ′ denotes the

derivative of f and 〈ijj|ρAB|i′jj〉 = δii′p
i
j . In the case of the geometric discord,

f ′(ρ) ∝ I − 2ρ and Eq. (13) reduces to TrA[ρ
′
AB, ρAB] = 0. In the case of the

quantum discord (4), Eq. (13) should be replaced for these measurements by34:

TrA[f
′(ρ′AB), ρAB]− [f ′(ρ′B), ρB] = 0 , (14)

with f(ρ) = −ρ log ρ, due to the extra local term.

Equations (13)–(14) allow us to identify the stationary measurements, from

which the one providing the absolute minimum of IMB

f (least disturbing measure-

ment) is to be selected. For instance, if there is a standard product basis where

〈ij|ρAB|ij′〉 = δjj′p
i
j and 〈ij|ρAB|i′j〉 = δii′p

i
j , such that the only off-diagonal ele-

ments are 〈ij|ρAB|i′j′〉 with i 6= i′ and j 6= j′, a measurement in the basis {|jB〉} is

clearly stationary for all IBf , as Eq. (13) is trivially satisfied, leading to a universal

stationary point.34 It will also be stationary for the quantum discord.

An example of such basis is the Schmidt basis for a pure state, |ΨAB〉 =
∑ns

k=1

√
pk|kk〉, with |kk〉 ≡ |kA〉 ⊗ |kB〉 and ns the Schmidt rank, since

〈kl|ρAB|k′l′〉 = δklδk′l′
√
pkpk′ for ρAB = |ΨAB〉〈ΨAB|. The same holds for a mix-

ture of a pure state with the maximally mixed state,

ρAB(x) = x|ΨAB〉〈ΨAB|+
1− x

n
In , (15)

where n = nAnB and x ∈ [0, 1]. The Schmidt basis provides in fact the actual

minimum of IBf (x) ≡ IBf (ρAB(x)) ∀ x ∈ [0, 1], as shown in Ref. 33. This implies

the existence in this case of a universal least disturbing measurement, and of a

concomitant least mixed post measurement state, such that ρ′AB majorizes any

other post-measurement state. We can then obtain a closed evaluation of IBf for

this case ∀ Sf ,
33 which shows some of its main features:

IBf (x) =

ns
∑

k=1

f

(

x(npk − 1) + 1

n

)

− f

(

x(n− 1) + 1

n

)

− (ns − 1)f

(

1− x

n

)

. (16)

If ns > 1, it can be shown that IBf (x) > 0 for x > 0, being a strictly increasing

function of x for x ∈ [0, 1] if f(p) is strictly concave. Moreover, a series expansion for

small x leads to IBf (x) ≈ αx2(1−∑ns

k=1 p
2
k), where α = −f ′′(1/n)/2 ≥ 0, indicating

a universal quadratic increase with increasing x if f ′′(1/n) 6= 0.33 This behavior is

then similar to that of the quantum discord10–12 and quite distinct from that of the

entanglement of formation, which requires a finite threshold value of x for acquiring

a nonzero value.

5. The Two Qubit Case

Let us now examine the particular case of a two qubit system. A general two-qubit

state can be written as:

ρAB =
1

4
(I + rA · σA + rB · σB + σ

t
AJσB) , (17)

1345033-7
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where I ≡ I2 ⊗ I2 denotes the identity, σA = σ ⊗ I2 and σB = I2 ⊗ σ. Due

to the orthogonality of the Pauli matrices, we have rA = 〈σA〉, rB = 〈σB〉 and

J = 〈σt
AσB〉, i.e., Jµµ′ = 〈σAµσBµ′〉, where µ, µ′ = x, y, z and 〈O〉 = Tr ρAB O.

A general local projective measurement in this system is just a spin measurement

along a unit vector k, and is represented by the orthogonal projectors (1/2)(I ±
k · σ). Therefore, the most general post-measurement state (3) reads

ρ′AB =
1

4
(I + rA · σA + (rB · k)k · σB + (σt

AJk)(k · σB)) , (18)

and corresponds in matrix notation (setting r and k as column vectors) to rB →
kktrB and J → Jkkt. The general stationary condition (13) can be shown to lead

to the equation34

α1rB + α2J
trA + α3J

tJk = λk , (19)

i.e., k × (α1rB + α2J
trA + α3J

tJk) = 0, which determines the possible val-

ues of the minimizing measurement direction k. Here (α1, α2, α3) = (1/4)
∑

ν,ν′=±1

f ′(pν
′

ν )(ν, νν′/λν , ν
′/λν), with pν

′

ν = (1/4)(1 + νrB · k + ν′λν) the eigen-

values of (18) and λν = |rA + νJk|. In the case of the quantum discord (4), the

additional local term leads to the modified equation34

(α1 − η)rB + α2J
trA + α3J

tJk = λk , (20)

where f(p) = −p log p and η = (1/2)
∑

ν=±1 νf
′(pν) = (1/2) log(p−/p+), with

pν =
∑

ν′ pν
′

ν = (1/2)(1 + νrB · k) the eigenvalues of ρ′B. A different approach was

provided in Ref. 28.

General analytic solutions of these equations can be obtained in a few cases. For

instance, a closed evaluation of IBf for any Sf is directly feasible for any two-qubit

state with maximally mixed marginals, i.e.,

ρAB =
1

4
(I + σAJσB) , (21)

for which Eq. (19) reduces to J tJk = λk ∀ If , indicating that k should be an

eigenvector of J tJ . Moreover, it can be shown34 that the minimum corresponds to

k directed along the eigenvector with the largest eigenvalue of J tJ ∀Sf (universal

least disturbing measurement), such that the post-measurement state (3)–(18) con-

serves the largest component: By suitable local rotations, σAJσB can be written as
∑

µ=x,y,z JµσAµσBµ, where Jµ are the eigenvalues of J tJ (the same as those of JJ t),

and the least disturbing measurement leads then to ρ′AB = (1/4)(I + Jµ̃σAµ̃σBµ̃,

where Jµ̃ = Max[Jx, Jy, Jz]. The final result for IBf (obviously identical to IAf for

this state) is34:

IBf (ρAB) = 2f

(

p1 + p2
2

)

+ 2f

(

p3 + p4
2

)

− f(p1)− f(p2)− f(p3)− f(p4) , (22)

where (p1, p2, p3, p4) are the eigenvalues of ρAB sorted in decreasing order (p1,2 =

(1 + Jz ± (Jx − Jy))/4, p3,4 = (1− Jz ± (Jx + Jy))/4 if |Jz | ≥ |Jx| ≥ |Jy| and

1345033-8
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Jz ≥ 0, Jx ≥ 0). It is verified that IBf = 0 only if p1 = p2 and p3 = p4, in which case

ρAB = ρ′AB is a classically correlated state.34 In the von-Neumman case, Eq. (22)

is just the quantum discord for this state, as in this case it coincides with the

one-way information deficit (ρ′B = ρB are maximally mixed). In the case of the

linear entropy, Eq. (22) yields the geometric discord and reduces to34 IB2 (ρAB) =

(p1 − p2)
2 + (p3 − p4)

2.

The linear entropy case (11) is obviously the most simple to evaluate, and in

this sense the most convenient. A full analytic evaluation for a general two-qubit

state was achieved in Ref. 32. Since Trσµσµ′ = 2δµµ′ , one easily obtains in this case

Ik2 = S2(ρ
′
AB)− S2(ρAB) =

1

2
(trM2 − ktM2k) , M2 = rBr

t
B + J tJ , (23)

where ‖J‖2 = trJ tJ , |r|2 = r·r and M2 is a positive semidefinite symmetric matrix.

The minimum of Ik2 is then obtained when k is directed along the eigenvector

associated with the maximum eigenvalue λ1 of M2, leading to32:

IB2 = Min
k

Ik2 =
1

2
(trM2 − λ1) . (24)

It is easily seen that Eq. (19) reduces in this case to the eigenvalue equation M2k =

λk, such that the stationary directions are those of the eigenvectors of M2.

Similarly, the q = 3 case in the Tsallis entropy, S3(ρ) ∝ (1−Tr ρ3), can also be

fully worked out analytically.34 We obtain:

Ik3 = S3(ρ
′
AB)− S3(ρAB) =

1

4
(trM3 − 2detJ − ktM3k) , (25)

M3 = rBr
t
B + J tJ + rBr

t
AJ + J trAr

t
B , (26)

where M3 is again a positive semidefinite symmetric matrix, with trM3 = |rB|2 +
‖J‖2+2rtAJrB . Its minimum corresponds then to k along the eigenvector with the

maximum eigenvalue λ1 of M3, which leads to34

IB3 = Min
k

Ik3 =
1

4
(trM3 − 2detJ − λ1) . (27)

It is again verified that Eq. (19) leads here to the same eigenvalue equation M3k =

λk, as (α1, α2, α3) = (rtBk+rtAJk, r
t
Bk, 1). In the case of the state (21), we obtain34

IB3 = (p1 − p2)
2(p1 + p2) + (p3 − p4)

2(p3 + p4).

It should be stressed that for the case of two qubits, these two entropies, S2

and S3, lead to the same entanglement monotone,74 since for an arbitrary single

qubit state they become identical:33,34 S2(ρA) = S3(ρA) = 1 − |rA|2 for ρA =

(1/2)(I2 + rA ·σ). Both quantities IB2 and IB3 reduce then to the standard squared

concurrence60,61 C2
AB in the case of a pure two-qubit state.

6. The Case of a Mixture of Two Aligned States

We are now in a position to examine the important case of a mixture of two aligned

spin 1/2 states,24 which will allow us to understand the behavior of the quantum

1345033-9
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discord of spin pairs in finite ferromagnetic XY chains, particularly in the vicinity

of the transverse factorizing field.24,46–57 We consider the bipartite state

ρAB(θ) =
1

2
(|θθ〉〈θθ| + | − θ − θ〉〈−θ − θ|) (28)

=
1

4
(I + cos θ(σAz + σBz) + cos2 θ σAzσBz + sin2 θ σAxσBx) , (29)

where |θ〉 = e−iθσy/2|0〉 denotes the state with its spin aligned along k =

(sin θ, 0, cos θ), and (29) corresponds to the spin 1/2 case, where |θ〉 = cos(θ/2)|0〉+
sin(θ/2)|1〉 and we have used the notation of Eq. (17). It is a particular case of X

state,26,27 i.e., states that commute with the Sz parity Pz = −eiπ(σAz+σBz)/2.34

The state (28) arises, for instance, as the reduced state of any pair in the n-qubit

pure states

|Θ±〉 =
|θθ · · · θ〉 ± | − θ · · · − θ〉

√

2(1± 〈−θ|θ〉n)
, (30)

if the complementary overlap 〈−θ|θ〉n−2 (〈−θ|θ〉 = cos θ for spin 1/2) can be ne-

glected (i.e., n large and θ not too small). As will be seen in the next sections,

the states (30) are the actual exact ground states of such chains in the immediate

vicinity of the factorizing field.

The state (28) is clearly separable, i.e., a convex combination of product states,68

but is classically correlated, i.e., diagonal in a product basis, just for θ = 0 or

θ = π/2. Accordingly, both the quantum discord and all measures (9), including

the geometric discord, will be nonzero just for θ ∈ (0, π/2). As seen in Fig. 1, they

all exhibit similar qualitative features, although significant differences concerning

the minimizing measurement arise. Due the symmetry of the state, it is apparent

that DA = DB = D and IAf = IBf = If ∀ θ.

0 π/4 π/2
Θ

0

0.1

0.2

D
,I

f

D

I2

I3

Fig. 1. Quantum correlation measures in the mixture of aligned states (28): The quantum discord
D, the geometric discord I2 and the “cubic” discord I3, as a function of the angle θ. Normalization
is such that all measures take the value 1 in a maximally entangled two-qubit state. Due to the
symmetry of the state, D = DA = DB and If = IA

f
= IB

f
∀ f .
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It is rapidly seen from Eq. (19) that for this state (as well as any other X

state), spin measurements along x, y or z are stationary, for both the quantum

discord and all measures If .
34 In the case of the quantum discord, the minimizing

measurement for this state (which is of rank 2, and hence minimized through a

standard von-Neumann measurement35) is in fact along x∀ θ ∈ (0, π/2), in which

case the eigenvalues of ρ′AB become pν
′

ν = (1/4)(1 + ν′
√

cos2 θ + sin4 θ), being

twofold degenerate. The final result for the quantum discord can then be expressed

as24:

D =
∑

ν=±1









2f









1 + ν

√

1− 1

4
sin2 2θ

4









− f

(

1 + ν cos2 θ

2

)

+ f

(

1 + ν cos θ

2

)









− 1 ,

(31)

where f(p) = −p log2 p. It is maximum at θ ≈ 1.15π/4. For θ ≈ 0, D vanishes

quadratically (D ∝ θ2) whereas for θ → π/2, D ∝ (π/2− θ)2(− log2(π/2− θ)2+ c).

On the other hand, the geometric discord (11) and the “cubic” discord (q = 3

in Eq. (12)) can be directly evaluated using Eqs. (24)–(27). We obtain34:

I2 =















1

2
sin4 θ θ < θc2

1

2
cos2 θ + cos4 θ θ > θc2 ,

(32)

I3 =















1

4
sin4 θ θ < θc3

1

4
(cos2 θ + 3 cos4 θ) θ > θc3 ,

(33)

where cos2 θc2 = 1/3 (θc2 ≈ 0.61π/2) and cos2 θc3 = (
√
17 − 3)/4 (θc3 ≈ 0.64π/2),

the minimizing measurement direction changing abruptly from z to x at θ = θc as

θ increases, in contrast with the quantum discord. Both I2 and I3 exhibit therefore

a cusp like maximum at θ = θc, as seen in Fig. 1. It is also seen from Eqs. (32)–

(33) that these quantities vanish as θ4 for θ → 0, whereas for θ → π/2 they vanish

quadratically (∝ (π/2−θ)2). For completeness, it should also be mentioned that the

behavior of the least disturbing local measurement for this state depends actually

on the choice of entropy. For instance, in the von-Neumann case [where Eq. (9)

becomes the one-way information deficit (10)], we obtain instead a smoothed z → x

transition for the minimizing measurement direction, which evolves continuously

from z to x in a small intermediate interval.34

7. XYZ Spin Chains and Transverse Factorizing Field

Let us now use the previous measures and results to analyze the quantum cor-

relations between spin pairs in a chain of spins si. We will consider finite chains

1345033-11
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with XYZ couplings of arbitrary range immersed in a transverse magnetic field,

not necessarily uniform, such that the Hamiltonian reads:

H =
∑

i

Bisiz −
1

2

∑

µ=x,y,z

∑

i,j

J ij
µ siµsjµ , (34)

where siµ denote the components of the local spin si (assumed dimensionless). We

first remark that the Hamiltonian (34) always commutes with the total Sz parity

or phase flip

Pz = ⊗n
i=1 exp[−iπ(siz − si)] , (35)

irrespective of the coupling range, anisotropy, geometry or dimension of the array.

Hence, nondegenerate eigenstates will have a definite parity. In fact, the ground

state of finite chains will typically exhibit a series of parity transitions as the field

increases from 0, before ending in an almost aligned state for sufficiently large fields.

A related remarkable effect in these chains is the possibility of exhibiting a

completely separable exact eigenstate at a factorizing field. The existence of a fac-

torizing field was first discussed in Ref. 46, and its properties together with the

general conditions for its existence were recently analyzed in great detail by sev-

eral authors.24,47–57 At the transverse factorizing field, finite XYZ chains actually

exhibit a pair of completely separable and degenerate parity breaking exact eigen-

states,51,54,55 which can be ground states under quite general conditions. In such a

case the transverse factorizing field corresponds to a ground state parity transition

(typically the last parity transition51,54,55), where the lowest energy levels of each

parity subspace cross and enable the formation of such eigenstates. Let us notice

that while these lowest levels become practically degenerate in a large chain for

fields |B| < Bc, they are not exactly degenerate in a finite chain, except at crossing

points.51,54,55,75,76

Let us then first describe the general conditions for which a separable parity

breaking state of the form:

|Θ〉 = |θ1 · · · θn〉 = ⊗n
j=1 exp[−iθjsjy ]|0j〉 , (36)

where sjz |0j〉 = −sj |0j〉, can be an exact eigenstate of (34). By inserting (36) in

the equation H |Θ〉 = E|Θ〉, it can be shown that such conditions are54,55:

J ij
y = J ij

x cos θi cos θj + J ij
z sin θi sin θj , (37)

Bi sin θi =
∑

j

(

sj −
1

2
δij

)

(J ij
x cos θi sin θj − J ij

z sin θi cos θj) , (38)

which are valid for arbitrary spins si. They determine, for instance, the values

of J ij
y and Bi in terms of J ij

x , J ij
z , si and θi. A careful engineering of couplings

and fields can then always produce a chain with such eigenstate, for any chosen

values of θi. It is also apparent that this eigenstate is degenerate, since Pz |Θ〉 =

| − Θ〉 = ⊗n
j=1 exp[iθjsjy ]|0j〉 will have the same energy (and differ from |Θ〉 if

1345033-12
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sin θj 6= 0 for some j), indicating that these fields necessarily correspond to the

crossing of two opposite parity levels. Each local state in the product (36) is a

local coherent state. We also note that any state ⊗n
j=1e

−iθj ·sj |0j〉 can be written,

except for a normalization factor, in the form (36) by allowing a complex θj .
54,55

Equation (37)–(38) are then generally valid for such type of states.

The second equation (38) cancels the matrix elements of H between |Θ〉 and

one spin excitations, and is then a “mean field-like” equation, i.e., that which arises

when minimizing the average energy 〈Θ|H |Θ〉 with respect to the θi, for fixed fields

and couplings. The first equation (37) ensures that the minimizing separable state

is an exact eigenstate, by canceling the residual matrix elements of H connecting

|Θ〉 with the remaining states (two-spin excitations). It can also be shown54,55 that

in the ferromagnetic-type case

|J ij
y | ≤ J ij

x ∀ i, j , (39)

where all off-diagonal elements of H in the standard basis of sz eigenstates are real

and negative, the state (36) is necessarily a ground state if θj ∈ (0, π/2) ∀ j, as the

exact ground state must have (or can be chosen to have if degenerate) expansion

coefficients of the same sign in this basis (different signs will not decrease 〈H〉), and
hence cannot be orthogonal to |Θ〉.51,54,55

In particular, a uniform solution θj = θ ∀ j, leading to |Θ〉 = |θ · · · θ〉, is feasible
if the coupling anisotropy:

χ =
J ij
y − J ij

z

J ij
x − J ij

z

, (40)

is constant ∀ i, j and nonnegative.54,55 Of course, if χ > 1 we can change it to

χ ∈ (0, 1) by swapping x ↔ y through a rotation of π/2 round the z axis. In such

a case, Eqs. (37)–(38) lead to:

cos2 θ = χ , (41)

Bi =
√
χ
∑

j

(J ij
x − J ij

z )

(

sj −
1

2
δij

)

, (42)

where Eq. (42) holds for sin θ 6= 0.

Equations (41)–(42) allow, for instance, the existence of a factorizing field for

uniform first neighbor couplings J ij
µ = Jµδj,i±1 in a finite linear spin s chain if χ =

(Jy − Jz)/(Jx − Jz) > 0, both in the cyclic case (J1n
µ = Jµ), where the factorizing

field is completely uniform,

Bi = Bs = 2s
√
χ(Jx − Jz) , (43)

as well as in the open case (J1n
µ = 0), where Bi = Bs at inner sites but B1 =

Bn = Bs/2 at the borders.54,55 A fully and equally connected spin s array with

J ij
µ = 2Jµ/(n−1) ∀ i 6= j (Lipkin model77–79) will also exhibit a uniform transverse

factorizing field at B = Bs if χ > 0.51,80,81 The ensuing state |Θ〉 can be ensured to

1345033-13
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be a ground state in all these cases if |Jy| ≤ Jx (when χ ∈ [0, 1]). Other possibilities,

like solutions with alternating angles,54,55 can also be considered.

8. Quantum Correlations in the Definite Parity Ground States

Let us now focus on finite spin chains which exhibit a separable parity breaking

exact eigenstate |Θ〉 at the factorizing field Bs. It will of course be degenerated with

| −Θ〉 = Pz |Θ〉. The important point is that the definite parity states

|Θ±〉 =
|Θ〉 ± | −Θ〉

√

2(1± 〈−Θ|Θ〉)
, (44)

i.e., the states (30) in the uniform case, will also be exact ground states at Bs.

Moreover, since the exact ground state of a finite chain will actually be nondegen-

erate away from the factorizing field (and the other crossing points), it will have a

definite parity. Hence, the actual ground state side-limits at B = Bs will be given by

the definite parity states (44) (rather than |±Θ〉). A ground state parity transition

− → + will then take place as the field increases across Bs.
51,54,55

While the ground states of each parity sector become degenerate in the large

n limit for fields |B| < Bs, in finite chains the degeneracy is lifted and the actual

ground state will exhibit important correlations arising just from the definite parity

effect. For instance, in the immediate vicinity of Bs, the pairwise correlations, rather

than vanish, will approach the values determined by the states (44). They will then

depend on θi and θj for a pair i, j, irrespective of the separation i−j. In the uniform

case, such correlations will then be independent of the separation, since the states

(44) will be completely symmetric and will lead to a separation independent pair

reduced state ρij = Trij |Θ±〉〈Θ±| (ij denotes the rest of the chain). Such state is

given exactly by24

ρεij(θ) =
|θθ〉〈θθ| + | − θ − θ〉〈−θ − θ|+ ε(|θθ〉〈−θ − θ|+ | − θ − θ〉〈θθ|)

2(1 + ε〈θθ| − θ − θ〉) , (45)

where ε = ± cosn−2 θ for s = 1/2. This parameter is then small for not too small n

and θ. In the ε → 0 limit one recovers the mixture (28).

The concurrence of the state (45) (a measure of its entanglement60,61) depends

essentially on ε and is therefore small, vanishing for ε → 0 (as in this limit the state

(45) becomes separable). It is given explicitly by24,51,54,55:

C =
|ε| sin2 θ

1 + ε cos2 θ
, (46)

which is parallel (antiparallel)49,50 for ε > 0 (< 0). Its maximum value is 2/n (in

agreement with the monogamy property58,59), reached for θ → 0 in the negative

parity case, where the state (30) approaches an W -state.51

In contrast, we have seen that the quantum and geometric discord, as well as

the other measures of quantum correlations (9), do acquire finite and nonnegligible

values in the mixture (28) (Fig. 1), i.e., in the state (45) even for ε → 0, entailing
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Fig. 2. Left: The quantum discord D and the geometric discord I2 between spin pairs in the exact
ground state of a fully connected XY spin 1/2 array of n = 50 spins with coupling anisotropy
χ = Jy/Jx = 0.5, as a function of the scaled transverse applied field B. The dotted lines depict
the result for the mixture of aligned states (28) at the mean field angle cos θ = B/Jx, which is
almost coincident with the exact result for |B| < Jx and exactly coincident at the factorizing field
Bs =

√
χJx. Right: Same quantities for a cyclic chain of n = 50 spins with first neighbor XY

couplings with the same anisotropy, for a distant pair (L = 25). The dotted lines depict again the
results for the mixture of aligned states (28) at the mean field angle, which now coincide with the
exact results only at the factorizing field Bs.

simultaneous and coincident finite values for all pairs in the state (30).24 This

implies in turn infinite range of pairwise quantum correlations, as measured by D

or If , at least in the immediate vicinity of the factorizing field Bs, where they will

be described by the state (28) and will therefore be independent of both separation

and coupling range. Hence, Bs plays the role of a quantum critical point in the

small finite chain.

As illustration, we first depict in Fig. 2 the quantum discord and the geometric

discord of spin 1/2 pairs for XY couplings (J ij
z = 0 ∀ i, j) in the ground state of

the fully connected array (Lipkin-type model) and of the nearest-neighbor cyclic

chain, for anisotropy Jy/Jx = 0.5 in the ferromagnetic type case (Jx > 0). The

emergence of a finite appreciable value of these quantities for |B| < Bc, persisting

for pairs with large separation even in the case of first neighbor couplings, is then

a direct consequence of the definite parity effect. The exact results for n = 50

spins were computed by direct diagonalization of H in the Lipkin case (where

the ground state belongs to the completely symmetric representation having total

spin S = n/2), while in the nearest neighbor chain they were obtained through the

exact Jordan–Wigner fermionization,82 taking into account the parity effect exactly

in the discrete Fourier transform (see for instance Refs. 51, 75, 76). In both cases

the ground state exhibits n/2 parity transitions as the field increases from 0, the

last one at Bs, although for the case depicted (N = 50), their effects on D or I2
are not visible in the scale of the figure (they become visible for smaller n24).

It is verified that at the factorizing field (43), the exact results for D and I2 in

both models coincide with those obtained for the mixture (28), i.e., with Eqs. (31)

and (32) for cos θ =
√
χ [Eq. (41)], being then identical and the same for any pair

at this point. Moreover, in the fully connected case the exact results for D and
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I2 are actually practically coincident with those obtained from the mixture (28)

(dotted lines) in the whole region |B| < Jx if θ is the mean field angle satisfying

cos θ = B/Jx [Eq. (38)], since the ground state is in this region well approximated

by the definite parity states (44) or (30), even away from Bs. The behavior of

D and I2 for B ∈ [0, Jx] resembles then that obtained for the mixture (28) for

θ ∈ [0, π/2]. This is not the case in the chain with first neighbor couplings, where

the agreement holds just at Bs, and where D and I2 become appreciable only for

|B| < Bc = (Jx + Jy)/2 (which is smaller than the mean field critical field Jx but

slightly above the factorizing field
√
χ). Nonetheless, the values attained by D and

I2 in the whole region |B| < Bs are still quite large, owing to the definite parity

effect, although they exhibit the effects of correlations beyond the parity projected

mean field description provided by the states (44).

We also depict in Fig. 3 results for D and I2 for all separations L = 1, . . . , n/2 of

the spins of the pair, in the nearest neighbor coupling case (in the fully connected

model they are obviously identical ∀ L). It is seen that the values of D and I2 (and

the same for I3 or other If ’s) rapidly saturate as L increases in the region |B| < Bc,

reaching here a finite nonnegligible value due to the definite parity effect, whereas

for |B| > Bc they are appreciable just for the first few neighbors (L = 1, 2). In the

last region they can be described perturbatively.24

It is apparent from Figs. 2–3 that the same qualitative information can be

obtained either from the quantum discord D or the geometric discord I2, except

for the type of maximum. That of I2 is cusp-like due to the sharp x → z transition

in the minimizing measurement direction that arises as the field increases, which

parallels that occurring for the state (28) as θ decreases (see Fig. 1). Such transition

reflects the change in the type of pairwise correlation, and resembles that of the

concurrence (which changes from antiparallel to parallel at Bs
51). We also mention

that while the behavior of I3 (not shown) is similar to I2, other If can exhibit a

smoothed maximum as the transition from x to → z in the measurement direction

can be continuous.34

0 0.5 1.0 1.5 2.0

B�Jx

Bs

0

0.1

0.2

D

L�1

25

0 0.5 1.0 1.5 2.0

B�Jx

Bs

0

0.1

0.2

I 2

L�1 25

Fig. 3. (left) The quantum discord D and (right) the geometric discord I2 between spin pairs
with separation L = 1, 2, . . . , n/2 in the exact ground state of a cyclic chain of n = 50 spins
with first neighbor XY couplings and anisotropy χ = 0.5. The results for all separations are
simultaneously depicted. They all merge at the factorizing field Bs, where they coincide with the
result for the mixture (28) with cos θ = Bs/Jx =

√
χ.
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We finally remark that the exact ground state pairwise concurrence in the fully

connected case is small (of order n−1 and bounded above by 2/n),80,81 such that the

entanglement monotones associated with D and I2 (the entanglement of formation

and the squared concurrence) are very small in the scale of Fig. 2. The same occurs

with the concurrence of largely separated pairs in the nearest neighbor case,83 which

is nonzero (but very small for this anisotropy and size) just in the immediate vicinity

of Bs.
51,54,55

9. Conclusions

We have examined the behavior of pairwise quantum correlations in the exact

ground state of finite ferromagnetic-type XY spin chains in a transverse field, by

analyzing the quantum discord as well as other generalized measures of quantum

correlations. We have first provided a brief review of the latter, which are based on

general entropic forms and defined as the minimum information loss due to a local

measurement in one of the constituents. They generalize the one-way information

deficit and contain the geometric discord as a particular case, preserving at the same

time the basic properties of the quantum discord like reducing to the (generalized)

entanglement entropy in the case of pure states and vanishing just for classically

correlated states. We have shown that all these measures indicate the presence of

long range pairwise quantum correlations for |B| < Bc in the exact ground state

of these chains, which arise essentially from the definite Sz parity of such state

and can be understood in terms of the model based on the mixture of aligned

states (28). They all reach full range at the factorizing field, where they acquire

a finite nonnegligible constant value which is independent of the pair separation

or coupling range and is determined solely by the coupling anisotropy. Such value

is exactly described by the states (28) or (45), which also provide a quite reliable

description of these correlations for all |B| < Bc for long range couplings, as we

have seen in the case of the fully connected model. Parity effects are then seen to

be of paramount importance for a proper description of quantum correlations in

finite quantum systems. A final comment is that the use of simple entropic forms

involving just low powers of the density matrix, like those underlying the geometric

discord I2 and the cubic measure I3, enables an easier evaluation, offering at the

same time an increased sensitivity of the optimizing measurement to changes in the

type of correlation.
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