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Tension accumulation in container walls is a matter of concern in hydride based hydrogen

storage systems. As the hydrogen absorbing material swells during hydrogen absorption it

will need to flow and accommodate within its container. Failure to do so will result in the

build-up of tensions and, eventually, in the failure of the container after a number of

absorption-desorption cycles. There have been several ways of avoiding the build-up of

mechanical stresses: having a container geometry that allows the swelling of the hydride,

combining the hydride forming alloys with other materials that can handle the volume

increase or the stresses, and adding solid lubricants to improve the ability of the hydride to

accommodate within the container. In the present study we explore the application of

nanoscaled powders normally used in the industry as glidant agents for bulk powders. In

particular, we address the influence of three different types of glidants in the flowability of

LaNi5 powder: Aerosil R 805, molybdenum disulfide (MoS2) and Vulcan XC72 carbon black.

For this purpose, we have used a pressurized rotating drum device that allows hydrogen

pressure or vacuum to test LaNi5 in hydrogen absorbed or desorbed states. The angle of

repose results indicate an improvement on powder flowability when using Aerosil in

concentrations of approximately 0.05 wt% or MoS2 at concentrations of approximately

0.1 wt%. These results are in agreement with models that explain the reduction of inter-

particle forces when using small quantities of nanoscaled particles. Vulcan XC72 showed

no effectiveness as glidant. This unexpected behavior is most likely related to its tendency

to become trapped in the cracks of the larger LaNi5 particles and to form relatively large

aggregates.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
compression or cryogenic liquefaction needed in other storage

Introduction

Hydrogen storage by means of hydride forming alloys is a

technology field under development. Thesematerials offer the

opportunity to store hydrogen, while avoiding high pressure
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istics: high volumetric and gravimetric storage capacity,

equilibrium conditions near ambient pressure and tempera-

ture, fast reaction rate, high cyclability, etc. In addition to
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these characteristics, related to physico-chemical properties

of the material, there are engineering aspects that must be

addressed in order to use hydride forming alloys in large

scales: cost [1e4], heat management [5,6], hydrogen flow [7]

and the containment of the micrometric hydrogen storage

material [8]. One of these engineering aspects is how to deal

with the swelling of the storage material powder during the

absorption process. This is not a minor issue as hydride

forming alloys can vary their volume up to approximately 20%

during hydrogen absorption [9].

When a hydride forming alloy undergoes swelling and

shrinking cycles, two related phenomena commonly occur:

the reduction of the alloy powder, and the rise of tensions in

the walls of the container [8,10e12]. These two processes are

interconnected as the fines produced during the absorption-

desorption cycles tend to percolate to the lowest areas

increasing the packing ratio and the tensions produced [13].

Some studies show that tension keeps building up even after

plastic deformation of the containment vessel [14], while

other studies report higher tension values during activation of

the hydride [15,16]. Changes in alloy powder itself have been

reported due to tension accumulation, reducing particle size

and compacting the powder [17,18]. Particularly, it has been

proposed that one powder reduction mechanism is originated

in the friction between the particles [19].

One approach to avoid the build-up of tensions in the

container walls is to allow the material to flow and accom-

modate as it swells during hydrogen absorption [20] in a rigid

container, failure to do so will result in tension accumulation

in the walls and, eventually, in mechanical failure. Tension

accumulation is, therefore, largely dependent on interparticle

friction [21] and, more generally, on the flowability of the

hydrogen absorbing material. The ability of fine powders to

flow is hindered by the action of van der Waals forces, which

become dominant as the particle size decreases [22e24]. This

is the case for hydrogen absorbing materials, as particle size

distribution ranges from 10�1 mme102 mm [25].

There have been previous attempts to mitigate the accu-

mulation of tensions due to hydride swelling by incorporating

solid lubricants or elastomers. Baker and Lynch incorporate

such materials in fractions of about 10% in weight or 30% in

volume reducing densification, compaction and stress build-

up during cycling [26]. They used fluorocarbon materials to

enhance flowability, such as DuPont Teflon 7A and Viton, in

particle sizes of the same range as hydride particles. Their

material choice also considered the chemical compatibility

with the hydride forming alloy.

Another approach involved manufacturing composite

materials based on a hydrogen absorbing alloy and a second

material capable of coupling with the swelling of the alloy.

Heubner et al. describe the testing of a composite consisting

of a primary hydrogen absorbing phase and conclude they

can achieve very high volumetric storage densities [27]. Blytas

details the use of a plastic elastomer binder in a concentra-

tion between 2 and 15 wt% to form pellets with LaNi5. These

pellets show good mechanical characteristics while main-

taining hydrogen capacity [28]. Sometimes this second ma-

terial may also have high thermal conductivity thus also

improving the absorption dynamics [29e31]. This approach is

successful in eliminating tensions in the container walls, but
in some cases the degradation of the material could not be

avoided [17,32].

In 1974, Rumpf showed that increased surface roughness

leads to a reduction of interparticle forces for originally

smooth particles [33,34]. Surface roughness works by

increasing the distance between the primary surfaces of two

interacting particles. The particles of materials used as gli-

dants are characterized by diameters in the lower nanometer

range. In consequence, they are strongly adsorbed on the

surfaces of larger particles and act in the same manner as

surface roughness, i.e. they work as spacers between the

surfaces of the primary particles. This leads to a reduction of

the total contact area between the particles. As a result the

van der Waals forces are reduced allowing gravitational or

other forces to prevail. From various literature sources it is

known that an amount of glidant ranging from 0 to 1 vol %

greatly improves the flow of bulk powders [22,35].

According to Meyer and Zimmermann [34], the capacity of

a nanomaterial to act as glidant is almost independent of its

chemical nature. However, the size of nanomaterials as well

as their tendency to agglomerate do depend on the composi-

tion and/or the manufacturing method. On the other hand, it

is of utmost importance that the chosen glidant does not react

with the hydrogen absorbing material as this could hinder its

capacity. These aspects make the chemical nature of the gli-

dant important.

In a previous work, we studied the flowability of LaNi5, a

well-known hydrogen storage material, by means of a modi-

fied rotating drum that allows testing under different

hydrogen pressures [36]. Among conclusions, an evaluation

regarding how flowability is affected when using different

amounts of glidants was suggested. The method of the

rotating drum allowed us to determine the interparticle fric-

tion variation of the hydride forming alloy as a function of

activation and hydrogen charge. In a recent work, Charlas

et al. [21] used rotating drum measurements to calibrate a

Discrete Element Modelling (DEM) numerical model that was

then applied to calculate strains and stresses in a hydride

container subject to cycling.

In the present work, we study the effect of adding nano-

scaled glidant agents to activated LaNi5 on the angle of repose

and the density of the powder, both in charged and discharged

states. As glidant candidates, we have chosen Aerosil R 805, a

well-established glidant agent, and Vulcan XC72 carbon black.

We have also tested MoS2 which is a well-established solid

lubricant with a significant fraction of particles smaller than

1 mm.
Experimental method

Material preparation

To obtain the hydrogen storage material LaNi5, pure elements

were melted in an arc furnace under argon, then turned and

re-melted five times to improve homogeneity. Once cooled,

the alloy ingots were crushed and sieved to obtain a particle

size range from 74 mm to 1410 mm.

Activation was performed in a stainless steel reactor with

the following characteristics: 16 mm external diameter,

https://doi.org/10.1016/j.ijhydene.2018.01.207
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Fig. 1 e Picture of the rotating drumwith an activated LaNi5
sample inside.
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12 mm internal diameter and 140 mm length. The reactor was

immersed in a thermostatic water bath at room temperature.

According to previous estimations of reaction time for this

set-up [6], we performed an absorption of 22 min at 20 bar of

high purity hydrogen (5.0), and a desorption of 28 min against

mechanical pump vacuum. After 14 cycles under these con-

ditions, the resultingmaterial was sieved in a glove box with a

70 mm sieve, discarding larger particles.

Considering the requirement of chemical neutrality for

glidants, our first choice was Aerosil R 805, a nanometric silica

powder widely used for this purpose. We also performed tests

using carbon black powder, trade name Vulcan XC72 from

Cabot. Another glidant we tested is Molybdenum disulfide

(MoS2) from Molykote which, in spite of having sulphur in its

composition, is not suspected of contaminating the hydride

powder. According to an early study by Eckert [37], MoS2 in a

pure hydrogen atmosphere presents a significant decompo-

sition only when above 715 �C. There have been numerous

studies on the poisoning of hydrides, but they are limited to

highly reactive gases, such as SH2 [38e40]. In case the MoS2
interacts with the hydrogen absorbing material, we expect

such interaction to be only superficial [41].

Materials handling and mixing

All handling of the absorbing material after activation was

made under controlled atmosphere in a M-Braun MB10 glove

box (oxygen concentration � 4 ppm/vol and humidity

concentration � 2 ppm/vol). The weight of both the absorbing

material and the flowing agents was measured using a Rad-

wag AS 220 R2 analytic scale inside the glove box. Themixture

of the flowing agents and the absorbing material was first

performed by hand shaking using a volumetric flask, and then

by rolling the rotating drum, at least, 100 turns. We compared

the angle of repose distribution of a sample mixed by this

method with the same sample mixed 1500 turns more,

without noticing any measurable difference, which indicates

that mixing time may not play a role under the conditions of

the present study.

In the case of Aerosil, it was necessary to gently break ag-

glomerates inside a beaker beforemixing it with LaNi5 powder

until no agglomerates could be recognized by the naked eye.

According to Majerov�a et al. [22], the primary particles of the

glidants exist in the form of agglomerates which are broken

down into smaller aggregates during the blending process.

These smaller aggregates adsorb at the surface of the other

solid component particles and thus diminish attractive van

der Waals forces by increasing the roughness of the host

surface.

It is worth noting that handling difficulties are consistent

with the dynamic angle of repose results: for those mixtures

that showed higher angle of repose during rotating drum

tests, indicating a more cohesive behavior, we observed rat-

holes and stable arches while using a funnel inside the globe

box.

Experimental set-up and image processing

A rotating drum capable of withstanding 12 bar pressure was

used during the present study. The rotating drum cavity has a
diameter of (50.0 ± 0.5)mmand a depth of (15.0 ± 0.5)mm. The

cylindrical wall was sandblasted to maximize friction while a

thick float glass was used on both sides to have optical access

and minimize friction. The angular velocity was set to

(4.2 ± 0.1) rpm.

To inject or extract hydrogen, a 0.5 mm nominal passage

stainless steel filter was fitted flushwith the cylindrical wall. A

matt green surface was placed behind the rear glass to

enhance imaging contrast (Fig. 1). Measurements were per-

formed with a fixed volume of approximately 8 cm3 of un-

compacted powder.

To measure the angle of repose, we obtained videos at 60

frames per second with a Nikon 1 J5 camera. Among the in-

formation obtained after processing the videos, we show the

mean upper angle of repose (b) before an avalanche event

occurs, with its respective standard deviation (error bar). We

consider the upper angle of repose to be the most meaningful

parameter to address the powder flowability. Every result is

obtained from averaging a minimum of 150 upper angle

measurements. More details of image capture and processing

can be found in Ref. [36]. Density evolution was addressed by

calculating the hydride volume from the videos andweighting

the material inside the drum after each experiment.

Particle size measurements

Since flowability is strongly influenced by particle size and

particle size distribution [42], we measured the particle size

distribution of LaNi5 and MoS2 by means of a Mastersize 3000

particle size analyzer. For this purpose, samples of the pow-

ders were retrieved and dispersed in deionized water. The

results of the size analysis are shown in Fig. 2.

The use of water as dispersant could lead to the deterio-

ration of the hydrogen absorbing material that could result in

changes in particle size distribution. To verify the size distri-

bution results, hydride powder samples were carefully

dispersed on graphite adherent substrate to obtain SEM im-

ages with an FEI Inspect S50 microscope (Fig. 3). In the case of

slender particles, we measured both the major and the minor

axis. To address the particle size distribution, we calculated

the Dv10, Dv50 and Dv90 parameters which are the threshold

sizes corresponding to the 10%, 50% and 90% cumulative

https://doi.org/10.1016/j.ijhydene.2018.01.207
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volume. After measuring more than 1100 particles from a

number of SEM images, we obtained a particle size distribu-

tion that closely matched Fig. 2, with a Dv50 of 21 mm. On the

other hand, the Dv50 parameter obtained with the particle

size analyzer was 27.6 mm, showing good agreement.

Due to experimental conditions, which involved high pu-

rity hydrogen or argon atmosphere at all times, liquid bridge

type interparticle forces are not expected. Therefore, themain

interparticle force is presumed to be of van der Waals type.

The van der Waals attraction force (FvdW) between two

particles separated by a smaller spacer particle, schematically

shown in Fig. 4, can be calculated following the equation

presented by Zimmermann et al. [43].

FvdW ¼ �A=6
h
rR

��
e2ðrþ RÞ�þ R

.�
32ðrþ eÞ2

�i
(1)

where A is the Hamaker constant of the particles, r the spacer

particle radius, R the powder particle radius and e the distance

between them (see Fig. 4).

Here, the Hamaker constant depends on the material

involved, being 6.5� 10�20 J for silica [44] andz25 � 10�20 J for

graphite [45]. If we estimate the forces for our LaNi5 particle

distribution according to eq. (1), assuming silicon particles as

spacers and an interparticle distance e of 0.4 nm [43], we

obtain the results shown in Fig. 5.

From Fig. 5, we can estimate that an effective spacer par-

ticle will have a radius of 10 nm or more. According to this
Fig. 3 e SEM images for LaNi5 particle size measurement. a) G
model, particles larger than 10 nm in radius will produce

nearly the same effect regardless of their size. It is also noted

that even though the value of the Hamaker constant for

spacer particles of different materials does change, this has a

minor effect on the resulting force as long as the spacer par-

ticle has a radius close to 10 nm. In our case, both Aerosil R 805

and Vulcan XC72 have a primary particle size in this order of

magnitude [42,46].

Aerosil particles are originally found in an aggregated state

and it is required that these aggregates undergo a degradation

process so that individual particles become available as gli-

dant elements. This can be achieved either by long mixing

times or by the application of very high shear forces [42]. In

our case, neither of thesemethods could be implementedwith

the metal hydride, therefore we have to assume that glidant

agents are not present in the form of primary particles but as

particle aggregates. The mixing that we performed after each

glidant agent addition was carried out at low rotation speeds

only to achieve a homogeneous distribution of the glidant in

the mixture.

The second material tested is not a glidant but rather a

solid lubricant, molybdenum disulfide powder (MoS2). The

particle size distribution of MoS2 was obtained by means of

the particle size analyzer (Fig. 2) with particle sizes extending

into the submicron range. This material shows low chemical

reactivity and it is widely used as a solid lubricant. It has a

layered structure held together by weak van der Waals forces

and can be mechanically exfoliated to produce flakes that

work as a lubricant.

The last glidant candidate that we analyzed is Vulcan XC72

carbon black. Carbon blacks can work effectively as glidant

agents though they can behave very differently depending on

the morphology of their aggregates. As thermal management

is an important aspect of hydride based hydrogen container

design [6,47], we opted for Vulcan XC72. This type of carbon

black has been successfully used to increase the thermal

conductivity of materials, and one of its distinctive features is

the formation of long and branched aggregates [48]. According

to Liu et al., carbon black primary particles are fused together

via covalent bonds to form aggregates [49]. Therefore, the

aggregate represents the true smallest structural unit of car-

bon black, yet it is not clear from theoretical considerations

(Fig. 5) how the larger aggregate size will affect flowability.
eneral picture, b) Detail of single particle measurement.
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In Table 1, we present the main physical properties of the

three glidant candidates and of the LaNi5. The measurement

of primary particles of nanometer sized powders is a chal-

lenging task as these particles are not found individually but

as part of strong aggregates [52]. In this work, we observed the

nanometer sized glidants by TEM microscopy (Philips CM200

UT) to estimate the primary particle sizes. We also observed

that these powders formed aggregates involving similar sized

particles, therefore, it was difficult to achieve a good statistical

convergence in the size estimation. For this reason, the par-

ticle sizes reported for Aerosil R 805 and Vulcan XC72 should

be regarded as an approximate value.
Results and discussion

The avalanche angle and relative density for activated LaNi5
as a function of Aerosil weight ratio are shown in Fig. 6, for
Table 1 e Physical properties of the three glidants and of LaNi

Commercial name Composition D

Aerosil R805 Silica (amorphous) 2.2 g

Molikote Z MoS2 (cristaline) 5.06

Vulcan XC72 Graphite (amorphous) 2.04

e LaNi5 (cristaline) 8.31
both charged (hydrogen concentration at maximum absorp-

tion capacity) and discharged states (absorbing material

depleted from hydrogen). Charging and discharging processes

take place in the rotating drum, while the addition of the gli-

dants requires the opening of the rotating drum in a glove box

under controlled atmosphere. As in our previous work [36], we

observed a smaller angle of repose for the discharged state. In

general, themeasurements show better flowability and higher

relative density near 0.1 wt% glidant concentration. This

tendency is in accordance with previous results [22,43], and

the improvement in flowability is consistent with the increase

in packing capacity [53e55].

For concentrations of Aerosil above 0.5 wt%, the density

change between the charged and discharged states, becomes

relatively small. This might occur since overall density be-

comes much lower when Aerosil is used with these concen-

trations. On the other hand, the use of glidant above 1 wt% is

strongly detrimental to flowability, causing higher angles of

repose than those measured for LaNi5 with no glidant added,

with median values even above 90�. From present results, we

consider that it is not relevant to determine the angle of

repose for mixtures with this glidant for concentrations above

2 wt%.
5 powder.

ensity Particle size

cm�3 [46] 20 to 75 nm

g cm�3 [50] Dv10 ¼ 1.5 mm, Dv50 ¼ 5.1 mm, Dv90 ¼ 11 mm

g cm�3 [51] 9 to 80 nm

g cm�3 [6] Dv10 ¼ 13 mm Dv50 ¼ 28 mm, Dv90 ¼ 60 mm

https://doi.org/10.1016/j.ijhydene.2018.01.207
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It is worth considering that our results are quite similar to

those obtained by Majerov�a et al. [22] or Zimmermann et al.

[43], who determined a maximum bulk density for binary

mixtures of maize starch with z0.2 wt% Aerosil.

The avalanche angle and relative density for activated

LaNi5 are shown in Fig. 7 as a function of MoS2 concentration

for charged and discharged states. We can observe an initial

decrease of avalanche angle, indicating improved flowability

with lubricant concentration in the 0.1 wt% vicinity. MoS2 is

not usually used as glidant for powders but it is incorporated

as a lubricant in different applications. As lubricant concen-

tration increases, we observe an increase of the avalanche

angle to values similar to the case with no lubricant added,

indicating that the optimum lubricant concentration have

been exceeded. In Fig. 7, we can also observe that the decrease

of the avalanche angle correlates with an increase in the

powder apparent density.

We performed a test using 5 wt% of MoS2, obtaining angles

of repose similar to those for the 2 wt% case. From direct

observation of the powder mixture in the rotating drum, we

note that as powder becomes more cohesive it eventually

slides as a block, leading to a coexistence of an avalanchewith

a movement as a solid, resulting in lower angles of repose.

This implies that MoS2 concentration results above 1wt%may

not be representative of flowability variation.

The last glidant candidate we studied is carbon black

(Vulcan XC72). It has been used as powder glidant and has

good thermal conductivity. It is also not expected to react with

the hydride forming alloy. Avalanche angle and relative den-

sity for activated LaNi5 as a function of carbon black concen-

tration are shown in Fig. 8. We could not observe any

concentration that would lead to an improved powder
55

60

65

70

75

80

85

)º(
noitubirtsid

elg nar epp
U

0 0.1 1 5

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

MoS2 concentration (wt%)

ap
p

(g
/c

m
3 )

Charged
Discharged

Charged
Discharged

Fig. 7 e Influence of MoS2 glidant on LaNi5 upper angle of

repose and bulk density.
flowability for this glidant candidate. This behavior differs

from previous studies using other types of carbon black such

as Printex 95 [43]. When handling Vulcan XC72, the high

cohesivity of the powder also becomes apparent, requiring to

sieve this material and mix it with a spatula to obtain a

satisfactory dispersion in the hydride. Present results suggest

that Vulcan XC72 is not a satisfactory glidant candidate for

LaNi5 at any concentration.

The flowability decrease for concentrations above 1 wt%

for both MoS2 and Aerosil, is consistent with previous obser-

vations of glidants behavior [35]. An accepted model states

that for low glidant concentrations, the adhesive force is

reduced as the small glidant particles increase the spacing

between larger particles, but as glidant concentration in-

creases, a saturation of the surface of the host particle occurs

and glidant interparticle adhesion becomes relevant. This, in

turn, decreases the flowability of the powder [35]. This phe-

nomenon is schematically shown in Fig. 9.
Fig. 9 e Schematic distribution of glidant on host particles:

a) no glidant, b) low glidant concentration, c) high

(saturated) glidant concentration.

https://doi.org/10.1016/j.ijhydene.2018.01.207
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Fig. 10 e SEM images of a) a single LaNi5 particle and b) a single LaNi5 particle with 0.2 wt% Aerosil.

Fig. 11 e SEM images of a) LaNi5 particles with adsorbed MoS2 submicronic particles (0.2 wt%) and b) detail of MoS2 particle

on the surface of a LaNi5 particle.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 3 ( 2 0 1 8 ) 6 2 1 9e6 2 2 8 6225
Moreover, previous efforts to mitigate mechanical issues

described in US Patents 4,600,525 and 4,036,944 can also be

interpreted from Fig. 9c). The authors used fluorocarbon or

elastomer materials in concentration in the z10 wt% range,

observing lesser tension accumulation in the container walls

as hydride swelled during absorption. We understand this

result as the consequence of using a material with better

flowing capacity than bulk hydride in a concentration which
Fig. 12 e SEM images of a) LaNi5 particles with Vulcan XC72 carb

black particles retained in cracks of LaNi5 particles.
allows it to be a continuum medium, thus leading to better

flowability. We consider that the present results are based on

a different mechanism, illustrated in Fig. 9b), and therefore

are complementary to the approach used in the mentioned

patents.

To gain better insight into the behavior of the different

glidant candidates, we have inspected samples of activated

LaNi5 with 0.2 wt% of glidant by means of SEM images (FEI
on black submicronic particles (0.1 wt%) b) detail of carbon
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Fig. 13 e SEM images of a) LaNi5 particles with Vulcan XC72 carbon black aggregated particles (0.1 wt%) b) detail of carbon

black aggregate.
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Inspect S50 and Zeiss Cross Beam 340 microscopes). The

samples were taken from the rotating drum after the corre-

sponding test was carried out. In Fig. 10a) we can see an image

of the original LaNi5 powder and in Fig. 10b) a mixture of the

LaNi5 sample with 0.2 wt% Aerosil. We can observe there are

small agglomerates evenly distributed on the surface of the

LaNi5 particles. This image is in agreement with the concep-

tual model of Fig. 9b), showing higher roughness of a LaNi5
particle when compared with a particle with no glidant.

In Fig. 11, we see the image of LaNi5 particleswith adsorbed

MoS2 particles on the surface. MoS2 particles are an order of

magnitude larger than Aerosil primary particles and cover a

smaller portion of the surface of the hydride. This observation

suggests a less effective performance as a flowingagent,which

is consistent with angles of repose shown in Figs. 6 and 7.

In Fig. 12, we observe the image of LaNi5 particles with

Vulcan XC72 carbon black with a concentration of 0.1 wt%. In

this case, most of the glidant particles have been retained in

the cracks of the hydride, while the surface of the particle

shows no signs of glidant presence. We have also identified

some glidant that was not retained in cracks but the particles

were found forming tight aggregates in all cases, as shown in

Fig. 13. This means that carbon black particles do not become

dispersed on the surface of LaNi5, as it is the case of the other

glidant candidates, which is consistent with the results

showing its ineffectiveness as glidant in our experimental

conditions. The reasons for this might be related to a higher

Hamaker constant than that of silica, in addition to larger and

stronger particle aggregates.
Conclusions

We determined a flowability improvement of activated LaNi5
powder as a function of glidant concentration using a modi-

fied rotating drum, for both charged and discharged states.We

tested three glidant candidates: Aerosil R 805, MoS2 and

Vulcan XC72 carbon black. Aerosil andMoS2 powder showed a

similar behavior with best performances for concentrations of

z0.05 wt% and z0.1 wt% respectively. Concentrations above

1 wt% eliminated the beneficial effect on flowability, leading

to higher angles of repose that indicate a more cohesive

behavior. Apparent density evolution is consistent with angle
of repose results, showing better packing capacity at glidant

concentrations with lower angle of repose.

The effect of added Vulcan XC72 carbon black as glidant

was unsatisfactory. When inspected bymeans of SEM images,

it became apparent that carbon black becomes retained in the

cracks of LaNi5 or lumped in aggregates. This behavior causes

the particles to be unavailable on the surface of the hydride,

therefore ineffective as glidant.

Further work needs to be done to confirm that flowability

improvement by means of small quantities of glidant agents

shall decrease tension accumulation in the container walls

during absorption process.
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